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Abstract

We study the deformation and breakup of an axisymmetric electrolyte drop which is freely sus-

pended in an infinite dielectric medium and subjected to an imposed electric field. The electric

potential in the drop phase is assumed small, so that its governing equation is approximated by

a linearized Poisson-Boltzmann or modified Helmholtz equation (the Debye-Hückel regime). An

accurate and efficient boundary integral method is developed to solve the low-Reynolds-number

flow problem for the time-dependent drop deformation, in the case of arbitrary Debye layer thick-

ness. Extensive numerical results are presented for the case when the viscosity of the drop and

surrounding medium are comparable. Qualitative similarities are found between the evolution of a

drop with a thick Debye layer (characterized by the parameter χ ≪ 1, which is an inverse dimen-

sionless Debye layer thickness) and a perfect dielectric drop in an insulating medium. In this limit,

a highly elongated steady state is obtained for sufficiently large imposed electric field, and the field

inside the drop is found to be well approximated using slender body theory. In the opposite limit

χ ≫ 1, when the Debye layer is thin, the drop behaves as a highly conducting drop, even for mod-

erate permittivity ratio Q = ǫ1/ǫ2, where ǫ1, ǫ2 is the dielectric permittivity of drop interior and

exterior, respectively. For parameter values at which steady solutions no longer exist, we find three

distinct types of unsteady solution or breakup modes. These are termed conical end formation,

end splashing, and open end stretching. The second breakup mode, end splashing, resembles the

breakup solution presented in a recent paper [R. B. Karyappa et al., J. Fluid Mech. 754, 550-589

(2014)]. We compute a phase diagram which illustrates the regions in parameter space in which

the different breakup modes occur.
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I. INTRODUCTION

The behavior of a viscous liquid drop immersed in a viscous surrounding fluid and acted on

by an imposed electric field is a classical problem which has been extensively studied for over

one hundred years. It is known that a mismatch in electrical properties between the fluids

results in a jump in electric stress at the drop interface. In the case of a drop subjected to a

uniform far-field electric field, non-uniform tractions at the drop surface lead to deformation

of the interface and, for sufficiently large imposed field, breakup of the drop. This problem

arises in a number of important applications, including electrosprays, electrohydrodynamic

atomization, breakup of droplets in thunderstorms, microfluidic processes, and others. A

thorough review of the topic can be found in [1–3].

For either the case of a perfect dielectric or a perfectly conducting drop in an insulating

medium, in which free charge is absent, the electric field only modifies the normal stress

balance. This leads to elongated (prolate) steady-state drop shapes, as shown in a number

of early studies [4–9]. Criteria on the critical electric field strength beyond which no steady

shape exists have been established based on a spheroidal approximation [8, 10] (exact so-

lutions for the electric field in a spheroidal (solid) geometry can be found in [11, 12]). For

either a charged or uncharged drop in a uniform electric field, these theoretical results are

in fair agreement with experiments. In addition to steady prolate shapes, various unsteady

shapes have been observed. For example, the work of Taylor [8], together with experiments,

elucidated the well-known ’Taylor-cone’ phenomenon for a conducting drop which includes

predictions of the angles for a drop or bubble with conical ends (see also related work in [13–

16]). It is worth noting that Taylor’s solution [8] is in fact based on a local analysis that

assumes a steady or equilibrium cone, while in experiments the dynamics is often observed

to be unsteady, with a thin fluid jet emitted from the end of the conical or pointed tip. The

results in this paper, using a simple electrokinetic model, also show conical behavior in the

conducting drop limit. A recent review on topic of Taylor cones in two-phase flow can be

found in [17].

Experiments [7] in weakly conducting fluids show oblate drop shapes, in addition to the

prolate profiles mentioned above. To explain the oblate drop shapes, Taylor proposed the

so-called leaky dielectric [18] or Taylor-Melcher (TM) model (see [2]) for weakly conducting

fluids by incorporating surface charge. Tangential electric stresses generated by surface
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charge are found to be important for predicting steady state shapes and unsteady drop

behavior that is in qualitative agreement with experiment, although quantitative agreement

is sometimes lacking. A few drop shapes other than simply prolate or oblate spheroidal,

such as an elongated shape with multiple lobes or unsteady profiles with small blobs of

fluid connected by a thin thread to a larger fluid mass [7, 9, 19, 20] have been predicted

numerically based on the leaky dielectric model [21, 22]. However, various experiments also

report discrepancies between the TM model and experimental results (see for example Vizika

and Saville [23] and Ha and Yang [19]), which suggest the necessity of further modeling work.

Despite the lack of quantitative agreement with experiments on drop deformation in

electrified fluids, the TM and related models have been widely and successfully applied to

many problems in electrohydrodynamics. This includes electrified thin liquid films [24, 25]

and liquid threads or layers [26–30]. The phenomenon in which a thin thread or small

droplets are ejected from a Taylor-cone-like drop end is predicted using the TM model

(interfacial surfactant can produce similar ‘tip-streaming’ phenomena in the absence of an

electric field, see e.g. [31–33]). The recent study of Collins et al. [34] based on the TM model

demonstrated that fluid ejection from Taylor cones is due to the effect of surface charge

convection in the model (see also the work [35] for a charged inviscid drop with surface

charge convection). Our results show the possibility of liquid ejection of a different type for

an electrokinetic fluid model, when intrinsic surface charge is not explicitly represented in

the model. Similar electrohydrodynamic tip-streaming is numerically observed in Pillai et al.

[36, 37], who include ion dynamics to describe the origin of the charges in the TM model.

A thorough review on the TM model can be found in Melcher and Taylor [2], Saville [38],

and Vlahovska [39], which makes further attempts to explain the origin of surface charges

in the TM model by employing the Poisson-Nernst-Planck equation of electrokinetics (see

also the theoretical studies of [40–42]).

In recent years there has been renewed interest in more detailed electrokinetic models

which incorporate equations governing the dynamics of (bulk) ionic charge. Of particu-

lar interest has been the relationship of Taylor’s leaky dielectric model to the thin Debye

layer limit of the electrokinetic models. Following the early work by Baygents and Saville

[40], Schnitzer and Yariv [43] derived a macro-scale model based on asymptotic analysis of

electrokinetic equations. The TM model without surface charge convection is shown to be

recovered in the thin-Debye-layer and large electric field limit (it is argued that effective sur-
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face charge convection emerges from higher order terms). As in [40], the model of Schnitzer

and Yariv assumes surface adsorption-desorption of charge from the bulk. An alternative

analysis is given by Mori and Young [44], who derived Taylor’s full leaky-dielectric model in

the thin Debye layer limit by including a weak reaction term in the ion transport equations

as a model for a weak electrolyte, as suggested in Saville [38]. They assume that no charges

accumulate at the genuine interface, so that interface charge in the macro-scale model results

solely from the layer structure.

In this paper, we modify the traditional model for a perfect dielectric drop in an insu-

lating medium by assuming that the fluid inside the drop is an electrolyte, while keeping

the exterior fluid as nonionic. We avoid the difficulty of solving the full nonlinear prob-

lem for the ion dynamics, as in [36], by employing the Debye-Hückel approximation for the

electric potential inside the drop, which results a linearized Poisson-Boltzmann or a mod-

ified Helmholtz equation. The model presented here is formally valid for small potential,

or more precisely, when eφ/(kBT ) ≪ 1. However, we will sometimes also apply it to cases

with large deformation (e.g. Figure 9) which may be beyond its range of formal validity.

In this case, our model gives behavior that is in qualitative agreement with experiments,

and with other models. A discussion of the Debye-Hückel theory and its limitations is given

in [45]. A similar model was previously presented in Hua et al. [46], but there the focus

is on analytical theory for small drop deformation. We go beyond this and carry out a

more comprehensive numerical investigation by reformulating the problem as a system of

boundary-integral equations for the coupled electrostatic field and fluid flow (Stokes flow)

problem. Numerical computations based on a boundary integral formulation for the prob-

lem of freely suspended drops in an electric field have been popular due to their accuracy

and simplicity [14, 21, 22, 47–52]. When the electric potential is governed by the Laplace

equation, there is an analytical expression for the axisymmetric version of the Green’s func-

tion (i.e., the azimuthal part of the surface integral can be done analytically). However,

this is not the case for the modified Helmholtz equation that arises here from the linearized

Poisson-Boltzmann equation. Although accurate numerical schemes to solve boundary inte-

gral formulations of Laplace and Helmholtz equations in axisymmetric geometries have been

developed (see [53] and references therein), one of the main contributions in this paper is to

develop a scheme to accurately and efficiently compute the Green’s function for the modified

Helmholtz equation and apply it to a moving boundary problem. In this way, we extend
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previous studies to assess the effect of ions on drop deformation in the case of arbitrary

Debye-layer thickness. For numerical efficiency, our results are specialized to the case when

the viscosity of the drop and surrounding medium are comparable.

Along with the numerical simulations, we also carry out a slender-body analysis (in the

case of highly elongated drops) starting from the boundary-integral equations to approximate

the electric field inside the drop. A correction term to the results of [13] that takes into

account the presence of ions is derived, and the result is shown to agree reasonably well with

simulations of the full problem.

The analysis and numerics are used to find steady state solution branches or response

curves over a wide range of parameter values. For parameter values at which steady solutions

no longer exist, we find three distinct types of unsteady solution or breakup modes, which are

termed conical end formation, end splashing, and open end stretching (see Section IVB for

examples of these breakup modes) . We compare our results with similar behavior observed

in other studies [15, 34–37, 50] based on different models.

The paper is organized as follows. We begin in Section II with a complete description

of the equations governing the electric field, viscous flow and the boundary conditions. In

Section III, the problem is reformulated as a system of boundary integral equations and the

numerical method is introduced. Numerical results are presented in Section IV. We summa-

rize the effect of ions on the drop’s steady deformation. Meanwhile, the nonlinear instability

is also discussed. Closing remarks are provided in Sec. V. In Appendix A, we present the

formulations of the Green’s function and its derivatives for the modified Helmholtz equa-

tion, as well as results demonstrating the accuracy of our numerical scheme in computing

the Green’s functions. In Appendix B, we present a brief derivation of the small deformation

theory for our problem. This is used to compare with and partially validate our numerical

results. Finally, details of the slender-body analysis are presented in Appendix C.

II. MATHEMATICAL FORMULATION

A. Electrokinetic equations

We consider the dynamics of an electrolyte fluid drop with viscosity λµ (region 1) im-

mersed in a dielectric (nonionic) medium with viscosity µ (region 2), as shown in Figure 1.
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Cylindrical polar coordinates x = rer + zez are used with the z-axis alligned with the

drop’s axis of symmetry. The surrounding medium is considered as a perfect dielectric and

the electric potential φ2 satisfies Laplace equation with a far field condition φ2 → −E z due

to the applied electric field E = E ez.
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r
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+ +
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λµ, ǫ1, χ

region 2

µ, ǫ2

z

E

FIG. 1. An electrolyte fluid drop with viscosity λµ is surrounded by a nonionic fluid with viscosity

µ. A constant electric field, directed along the z-axis, is imposed in the far field.

In the drop phase, the electric potential is governed by Poisson’s equation,

− ǫ1∇2φ1 = ρ =
N
∑

i=1

ezici, (1)

with ǫ1 the dielectric constant and ρ the bulk volume charge density. We assume that the ions

are in thermo-equilibrium and that their concentration follows a Boltzmann-distribution [54–

56],

ci = c0i e
−zie(φ1−φ0)/(kBT ), (2)

where c0i is the constant equilibrium concentration of ion species i, kB is the Boltzmann

constant, and T is temperature. Here, the neutral bulk condition that
∑n

i=1 zic
0
i = 0 is

applied. Here φ0 is a reference potential, which is set to zero without loss of generality. We

introduce

β =
E eR

kBT
(3)
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which measures the ratio of the imposed field potential over the thermal potential. Using R,

ER and c∗ as the characteristic length, electric potential and ion concentration in equation

(1), where R is the unperturbed drop radius and E is the uniform electric field at infinity,

we obtain the Poisson-Boltzmann equation in dimensionless form

−∇2φ1 =
eRc∗

ǫ1E

N
∑

i=1

zic
0
i e

−βziφ1 . (4)

In the case of small applied (drop phase) potential |βφ1| ≪ 1 this equation simplifies at

leading order to the linearized Poisson-Boltzmann or modified Helmholtz equation,

∇2φ1 = χ2φ1, (5)

where

χ2 =
e2R2c∗

ǫ1kBT

N
∑

i=1

z2i c
0
i . (6)

This linearized equation, also known as Debye-Hückel approximation, is widely used in

various problems involving electrolyte solutions [41, 46, 54–58]. At the drop interface, we

have the boundary conditions

φ1 = φ2, Qφ1n = φ2n, (7)

where Q = ǫ1/ǫ2. This specifies that no ionic charge accumulates at the interface, a condition

used in the electrolyte-drop model of [46].

B. Fluid motion and stress boundary conditions

The fluid motion is approximated by Stokes equations, which are nondimensionalized

using the spherical drop radius R for lengths, γ/R for pressure, and γ/µ for velocities, with

γ the surface tension,

−∇p1 + αφ1∇φ1 + λ∇2u1 = 0, ∇ · u1 = 0, (8)

−∇p2 +∇2u2 = 0, ∇ · u2 = 0. (9)

In the above,

α = χ2EbQ with Eb = ǫ2E
2R/γ, (10)
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where the latter quantity is an electric bond number which measures the ratio of Maxwell

or electric stress to capillary pressure. The stress balance on the interface is written as

[T · n]12 = [σ · n]12 −△f e = −κn, (11)

where σ = −pI + 2λie is the hydrodynamic stress tensor with λ1 = λ and λ2 = 1, e is

the symmetric part of the velocity gradient, n is the outward unit normal, and κ is the

interface curvature, taken as positive for a convex surface. Here [·]12 denotes the jump across

the interface, with the convention that it is the limit as the interface is approached from

the interior domain (region 1) minus the limit from the exterior domain (region 2). The

Maxwell stress, or electric contribution to the stress balance, is directed normally to the

interface and is given by

△f e =
Eb(Q− 1)

2

(

QE2
1n + E2

t

)

n, (12)

where En and Et are normal and tangential derivatives of electric field respectively (see also

Sherwood [21], Lac and Homsy [22], Miksis [47]). Far from the drop, φ2 → −z as |x| → ∞.

III. BOUNDARY INTEGRAL METHOD

A. Integral equations

We reformulate the electrostatic problem as a system of boundary integral equations using

classical potential theory [59]. Denote the Green’s function for the modified Helmholtz

equation by Gχ; expressions for this Green’s function are presented in Appendix A. The

electric potentials φ1 and φ2 in regions 1 and 2 satisfy

1

2
φ1(x0) +

∫

S

φ1(x)
∂Gχ

∂nx
(x,x0) dS(x) =

∫

S

∂φ1

∂n
(x)Gχ(x,x0) dS(x), (13)

−1

2
(φ2(x0)− φ∞(x0)) +

∫

S

(φ2(x)− φ∞(x))
∂G0

∂nx
(x,x0) dS(x),

=

∫

S

∂ (φ2 − φ∞)

∂n
(x)G0(x,x0) dS(x), (14)

where φ∞ = −z is the imposed far-field electric potential. We note that setting χ = 0 in

(13) recovers the case of a perfect dielectric drop, in which electrolyte is not present in the

interior (see [47]).
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The standard boundary integral formulation of the Stokes flow problem for the fluid

velocity is modified to include the electrostatic forcing. Starting from the Lorentz reciprocal

relation [60], we obtain

u1(x0) =
α

8πλ

∫

V

φ1(x)∇φ1(x) · J(x,x0) dV (x) +
1

8πλ

∫

S

n(x) · σ1(x) · J(x,x0) dS(x)

+
1

8π

∫

S

n(x) ·K(x,x0) · u(x) dS(x), (15)

u2(x0) = − 1

8π

(
∫

S

n(x) · σ2(x) · J(x,x0) dS(x) +

∫

S

n(x) ·K(x,x0) · u(x) dS(x)
)

,

(16)

where J and K are the Stokeslet and Stresslet Green’s functions for Stokes flow. The

first term on the right hand side of (15) is transformed into a surface integral by using the

divergence free property of the Stokeslet, namely,

∇ · J = 0, (17)

which leads to

∫

V

φ1(x)∇φ1(x)J(x,x0) dV (x) =
1

2

∫

V

∇x ·
(

φ2
1(x)J(x,x0)

)

dV (x), (18)

=
1

2

∫

S

φ2
1(x)J(x,x0) · n(x) dS(x). (19)

As x0 approaches interface, the integral equations can be combined to one equation by using

(11),

u(x0) = − 1

4π(1 + λ)

∫

S

J(x,x0) · △F e(x) dS(x)

− 1− λ

4π(1 + λ)

∫

S

n(x) · T (x,x0) · u(x) dS(x), (20)

where φs is the electric potential on the interface S and

△F e =
(

κ− α

2
φ2
s

)

n−△f e, (21)

where α is given in (10) and △f e is given by (12). Similar integral equation formulations for

a viscous drop in an electric field have appeared in [21, 22, 47], and [60, 61] provides more

details in the derivation, as well as numerical implementations. Note that the additional

term αφ2
s in (21) is a consequence of the electric body force in the Stokes equation. This

term can also be understood via a modified or effective pressure p̂1 = p1− α
2
φ2
1 in (8), which
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similarly implies (21). In the limit of a perfect conductor (χ → ∞), φ1 = 0, whereas in

the limit of a perfect dielectric drop, χ → 0, hence α → 0. Therefore, this additional term

vanishes in both extreme cases.

B. Computation of Green’s functions

The axisymmetric version of the free space Green’s function for Laplace’s equation (de-

fined as the azimuthal integral of the 3D Green’s function) can be expressed in closed form,

see for example, [61],

G0(z, z0, r, r0) =

∫ 2π

0

G3D(z, z0, r, r0, φ, φ0)dϕ =
K(k)

π
√

(z − z0)2 + (r + r0)2
, (22)

where G3D(z, z0, r, r0, φ, φ0) = ((z− z0)
2+ r2+ r20−2rr0 cos(φ−φ0))

−1/2/(4π) is the Green’s

function for the 3D Laplace’s equation in cylindrical coordinates, k2 = 4rr0/ [(z − z0)
2 + (r + r0)

2]

and k ≤ 1. Here K(k) is the complete elliptical integral function of first kind,

K(k) =

∫ π/2

0

dθ√
1− k2 cos2 θ

. (23)

The axisymmetric Green’s function for the modified Helmholtz equation, however, does not

have an analytical expression. Starting from the Green’s function for the modified Helmholtz

equation in cylindrical coordinates, we write the axisymmetric version as follows:

Gχ(z, z0, r, r0) =
1

4π

∫ 2π

0

exp
(

−χ [(z − z0)
2 + r2 + r20 − 2rr0 cosu]

1/2
)

((z − z0)2 + r2 + r20 − 2rr0 cosu)
1/2

du

=
1

4π

∫ 2π

0

exp
(

−χ [(z − z0)
2 + (r + r0)

2 − 4rr0 cos
2(u/2)]

1/2
)

((z − z0)2 + (r + r0)2 − 4rr0 cos2(u/2))
1/2

du

=
k

2π(rr0)1/2

∫ π/2

0

exp
(

−Λ [1− k2 cos2 θ]
1/2
)

(1− k2 cos2 θ)1/2
dθ, (24)

where Λ = 2χ(rr0)
1/2/k. When |Λ| ≪ 1 or |Λ| ≫ 1 in (24), the Green’s function is expanded

in an appropriate series for the numerical calculations in [62]. In the present study, we focus

on the direct evaluation of (24) by proper quadrature.

Substitution of t = cos θ into (24) results in

Gχ(z, z0, r, r0) =
k

2π(rr0)1/2

∫ 1

0

exp
(

−Λ [1− k2t2]
1/2
)

(1− k2t2)1/2
dt

(1− t2)1/2
. (25)
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Gauss-Chebyshev quadrature would seem a natural choice to integrate (25), treating (1 −
t2)−1/2 as the weight function. However, our experience shows that Alpert quadrature [63]

gives faster convergence and better performance. By recognizing (1 − t)−1/2 as a singular

function inside the integrand and setting t = 1− x, (25) can be rewritten as

Gχ(z, z0, r, r0) =
k

2π(rr0)1/2

∫ 1

0

exp
(

−Λ [1− k2(1− x)2]
1/2
)

(1− k2(1− x)2)1/2 (2− x)1/2
x−1/2dx. (26)

Alpert quadrature uses a hybrid Gauss-trapezoidal quadrature rule for the integration
∫ 1

0
f(x)dx where f(x) = g(x)x−1/2 and g(x) is regular. The quadrature follows the formula

(see [63] for more details)

T jkab
n (f) = h

(

j
∑

i=1

uif(vih) +
m−1
∑

i=0

f(ah+ ih) +
k
∑

i=1

wif(1− xih)

)

, (27)

where the nodes v1, ..., vj , x1, ..., xk and weights u1, ..., uj, w1, ..., wk are given for known

j, k, a, b which are related to the convergence order, here chosen as fourth order. The total

number of nodes is denoted by n = j +m+ k. This method is of high order accuracy when

the Green’s function is regular.

As k → 1, i.e. Green’s function (24) is close to singular and exhibits the same singular

behavior as (22) for Laplace’s equation. Simple calculation shows that the singular behavior

of the normal gradient of Gχ is also the same as that of G0. We add and subtract the

singular Laplace kernel to obtain

Gχ(z, z0, r, r0) =
k

2π(rr0)1/2

∫ 1

0

exp
(

−Λ [1− k2t2]
1/2
)

− 1

(1− k2t2)1/2
dt

(1− t2)1/2
+G0(z, z0, r, r0),

(28)

so that the first term is regular, and we use the hybrid quadrature method as described above.

Meanwhile, the singularity in G0 is treated in a standard way, via Gauss-log quadrature

[28, 64]. Expressions for the gradient of the Green’s function are given in Appendix A

and the method of treating the singularity in derivatives of Gχ is the same as for Gχ.

Furthermore, in Appendix A we provide sample calculations of both the Green’s function

and its derivatives, which demonstrates the accuracy and of our numerical method. We

note that for thin Debye layers Λ ≫ 1, and the main contribution to the integral in (28)

is localized near t = 1 and k = 1. Resolution studies show that our computation of the

Green’s function has error of about 10−6 for Λ up to 1414, when N = 2048 is employed in

the Alpert quadrature.
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C. Numerical procedure

In this paper, we focus on the deformation of axisymmetric drops. The azimuthal part

of the surface integrations in each of the integral equations is carried out analytically, ex-

cept for the ones with Green’s functions from the modified Helmholtz equations, for which

Alpert quadrature is implemented as described above. The drop interface is discretized by

N + 1 points, which divide it into N segments. The discretized equations assume the un-

known ‘densities’ φs and u vary linearly between node points along the interface. On each

boundary element, this gives an integral of the product of a linear (density) function and

the Green’s function. Integrations of this product are carried out in double precision using

six-point Gaussian quadrature when the element is regular. As x0 → x the integrand is

logarithmically singular, and Gauss-Log quadrature is used to handle the singularity (see

also the implementation in [28]). The normal and curvature along the drop interface are

calculated by fitting cubic splines, which is similar to Stone and Leal [65].

The linear system that results from discretizing an integral equation is solved by using the

Fortran subroutine dgesv in LAPACK. After obtaining surface velocities, the drop interface

is advanced by Euler’s method via the kinematic condition. The full method is second order

accurate in space and first order accurate in time. A solution is deemed to be in a steady

state when max|un| < 10−4 along the drop interface. For the steady state calculations

reported here, N = 40 ∼ 70 is typically enough to resolve the interface. The code for

the Stokes droplet without an electric field has been extensively tested and used in earlier

work [33, 66]. When electrostatic fields are included in both the drop and surrounding

phases in the simpler case of χ = 0, the code has been validated against small deformation

theory as well as the results in [21, 22], where good agreement is obtained. For example, in

Figure 2 we compare the numerically computed electric potential φs for a spherical drop with

an analytical prediction from Hua et al. [46], for a uniform imposed field with φ → −z as

x → ∞. Parameter values are Q = 10 and χ = 0.1, 1, 10. Excellent agreement is obtained.

If the drop deforms into a highly elongated spheroidal shape or a spindle shape with

conical ends, an adaptive regridding scheme is employed. In particular, grid points are

redistributed using cubic spline interpolation to be inversely proportional to local curvature,

so that the density of points is high near conical ends. One check on the overall method is

to compare our calculated results with those in Sherwood [21] (e.g. their Figure 3). The
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FIG. 2. Comparison of numerically computed results (solid lines) for the surface potential φs and

analytical solutions (cross symbols) for a spherical particle, from [46]. Here Q = 10 and χ is

indicated in the figure.

results are in excellent agreement (see also our Figure 5). If the drop becomes elongated

and exhibits end pinching or other breakup modes, larger N is used (typically N ∼ 160 to

320) together with adaptive time stepping. No special adaptive spatial regridding is applied

in this case.

IV. RESULTS AND DISCUSSION

We focus the discussion on the case where the interior and exterior fluids have equal

viscosity, i.e., λ = 1. The third term in equation (20) is then absent, which greatly simplifies

the numerics, but also allows for a rich bifurcation diagram and wide variety of unsteady

shapes. Results for λ 6= 1 will be reported elsewhere.

A. Steady state drops

In this section we show the computed steady states of drops in a uniform imposed electric

field. We note that unless specified otherwise, the reported simulation time is rescaled

following [67] as t = t̃γ/2πRµ(1 + λ), where t̃ is dimensional time. Following other work we
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measure drop deformation using the parameter

Df =
l − b

l + b
, (29)

where b and l are a typical half width and length of the drop at steady state. To compute

the steady response curve we use continuation in the parameter Eb: once a steady state

solution is obtained, we increase Eb to a larger value and use the steady solution at the

previous Eb as initial data.
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FIG. 3. Comparison between computed results (solid lines with filled symbols) and small deforma-

tion theory from [46] and Appendix B (dashed lines) with Q and χ indicated in the figure. Insets:

Magnification of results near Eb = 0.

Figure 3 compares the drop deformation for fixed permittivity ratios Q = 5 and Q = 50

and a range of χ. The deformation curves follow small deformation theory (see (B6) in

Appendix B) when Eb is relatively small. The deformation is seen to be greater when χ

is larger, with the same imposed electric field Eb. This is because capillary pressure has a

reduced effect, relative to electrostatic stresses, as χ is increased, per (21). This permits a

more deformed surface before a local force balance between the capillary force and Maxwell

(electrostatic) traction is reached. Increasing Q also tends to increase the deformation at a

fixed imposed field strength.
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Conducting drops

In our model, there are two ways to approach the conducting drop limit: either χ → ∞ or

Q → ∞. The surface potential φs in either case tends to zero, as can be seen by taking the

appropriate limit in the small deformation theory (see Appendix B). This theory also shows

that the deformation for χ ≫ 1 and Q ≫ 1 is given by Df ≈ (9/16)Eb, for Eb ≪ 1. Figure 4

shows the steady deformation curves for various values of Q and χ which all correspond to

a highly conducting liquid drop. As expected, the deformation curves nearly overlap each

other. The critical value of Eb at which point steady solutions no longer exist is roughly

the same for each branch and is about 0.21, which is consistent with the value reported

for a perfectly conducting drop in Karyappa et al. [50] and Dubash and Mestel [48]. The

maximum interface potential over all the steady solutions represented in the figure is less

than 0.03.
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FIG. 4. Steady state deformation curves for various Q and χ, corresponding to a highly conducting

drop, compared with the small deformation result Df = (9/16)Eb.
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Dielectric drops

When χ is small and Q is not too large (i.e., χ . 1 and Q . 101) , the drop is close

to a perfect dielectric suspended in an insulating medium (e.g., see the case χ = 0.1 and

Q = 5 in the left panel of Figure 3). Steady solution branches for such nearly dielectric

drops are shown in Figure 5, which extends the plot in Figure 3 to smaller values of χ and

larger imposed field strength Eb. Instead of plotting the deformation as in Figure 3, we

plot the aspect ratio b/l to which is better suited to the wide range of Eb used here. We

also overlay both the analytical solution using the spheroidal approximation at χ = 0 and

the boundary integral solution for a perfect dielectric drop in an insulating medium (the

analytical expression for the spheroidal approximation is available in Pillai et al. [36]). It

is seen that the computed deformation curves for χ = 0 and 0.01 almost exactly lie on top

of the analytical curve. For χ = 0.1, differences between the curves only occur when Eb

is sufficiently large. Consistent with previous observations at small deformation, increasing

χ promotes larger deformation for a given Eb. For χ = 0.2 and 0.25, deviation from the

10−1 100 101

Eb

100

101

l/b

Q= 5

spheroidal approximation
BIE χ= 0
BIE χ= 0.01
BIE χ= 0.1
BIE χ= 0.2
BIE χ= 0.25

FIG. 5. Comparison of drop deformation for various χ and Q = 5 together with the analytical

results based on a spheroidal approximation for χ = 0.
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insulating drop limit occurs at smaller Eb, as expected. An aspect ratio of l/b ≈ 4.4 is

quickly reached at about Eb = 1.6 for χ = 0.25, beyond which the drop is found to be

unstable and steady solutions no longer exist.

It is natural to carry out a slender body analysis when a highly elongated drop is obtained.

In Appendix C, we assume a highly deformed drop and obtain an asymptotic approximation

of the electric field for a spheroidal drop, see (C15). The field is shown to be almost uniform.

Our results serve as a correction to the result in [13] by taking into account the presence of

ions. Integration of the field gives the electric potential, and the theoretical drop shape and

electrostatic potential are compared to our numerically computed solutions in Figure 6. In

the upper panels of the figure, the drop is highly elongated with aspect ratio about 10 (i.e.

slenderness parameter ǫ = b/l ≈ 0.1). Both the shape and electric potential are in excellent

agreement with theory. In the bottom panels, the drop shape is shown to deviate from a
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FIG. 6. Comparison of drop shape with a spheroid that has the same aspect ratio. Top left: aspect

ratio l/b ≈ 10 for a slightly conducting drop with χ = 0.1, Eb = 6.5, Q = 5. Bottom left: aspect

ratio l/b ≈ 4.4 with χ = 0.25, Eb = 1.6, Q = 5. Right: comparisons between calculated surface

potentials and slender body approximation, for same parameter values as in left panels.
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spheroid with the same aspect ratio (about 4.4). The interfacial potential is also slightly

different from the prediction of slender-body analysis but the agreement is still reasonably

good.

B. Breakup behavior

In this section, we investigate drop deformation for parameter values in which steady state

solutions do not exist. Several different types of unsteady solution are observed (depending

on parameter values), which are classified into three groups: (i) conical end formation, (ii)

end-splashing, and (iii) open end stretching: A few case studies are presented before a

summary is given.

Conical end formation

In Figure 7, conical end formation is shown for conducting drops with Q = 50 and

χ = 0.1, 1, 10. In the upper panel of the figure, a time-sequence of unsteady drop shapes are
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FIG. 7. Upper panel: Evolution of drop with Q = 50, χ = 10 and Eb = 0.26. Bottom panel: Drop

shapes at breakdown of the numerical scheme for Q = 50 and Eb = 0.26.
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shown for χ = 10, Q = 50, starting from an initially spherical shape. In the lower panel, drop

shapes at the point at which the simulation is terminated are shown for χ = 0.1, 1, 10, which

all show the formation of unsteady conical drop tips that are similar to the shapes reported

in [13, 14, 21]. The simulation is terminated when the tip curvature κtip becomes sufficiently

large that the number of grid points and time-step required to resolve the interface make

the simulation too computationally costly. It is argued in Appendix C2, based on equation

(C16), that conical end formation can occur only for sufficiently large Q, or more precisely

Q & 15, regardless of χ.

Fontelos et al. [15] present an analysis of conical singularity formation for a charged,

perfectly conducting drop in an insulating medium. They find that the singularity formation

is self similar with κtip = O(τ−δ) and Un,tip = O(τ δ−1), where τ = ts − t is the time to

singularity formation (i.e., the singularity occurs at t = ts) and δ is a similarity exponent that

depends on the opening angle of the cone. Although our model incorporating electrokinetic

effects in the drop interior via the linearized Poisson-Boltzmann equation is different from

Fontelos et al. [15], this form of the similarity scalings seems to remain unchanged based

on our numerical results. We will determine δ from numerical data, but one difficulty

in doing so is that the singularity time ts is unknown. While it can be estimated from

numerical data, we take a different approach. Assuming the above self-similar scalings,

then τ ∼ 1/(κtip · Un,tip), and since accurate values for κtip and Un,tip are provided by the

numerical data, we can replace τ by 1/(κtip · Un,tip) in a log-log plot to determine δ. Such

a plot of the time evolution of tip curvature κtip versus 1/(κtip · Un,tip) for a drop which

forms conical tips is shown in Figure 8. The figure shows linear behavior for log κtip with a

slope that is very slightly dependent on χ. We estimate the slope magnitude or similarity

exponent to be very near δ = 0.71, which is close to the value of 0.72 reported in Fontelos

et al. [15]. Our simulations give slightly different results for the cone angles than Betelú

et al. [14] and Fontelos et al. [15]. We find the semi-angles are between 21 ∼ 24 degrees

for the different χ values. In the work of Betelú et al. [14], the semi-angle is shown to be

dependent on the viscosity ratio and is about 25 degrees for λ = 1. A slightly different result

of about 27.5 degrees is reported in Fontelos et al. [15] (for a different model). While we

cannot completely rule out numerical error as a source of the variation of cone angle with χ

found here, resolution studies suggest that the computed angles are well resolved. We note

that the current numerical method is only able to resolve about 2 decades of scaling in the

19



space-time neighborhood of the singularity, which is similar to the other cited studies. For

much more than this, and for a more detailed investigation of cone angles, it is anticipated

that a specialized numerical treatment of the emerging singularity is needed.
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1/(κtipUn, tip)
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ip
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FIG. 8. Evolution of interface tip curvature κtip versus 1/(κtipUn,tip) for the three cases in Figure 7.

Here, Un,tip is the normal velocity at the tip. Following the scaling law κtip = O(τ−δ) and Un,tip =

O(τ δ−1) from Fontelos et al. [15], we plot κtip versus the time to singularity τ ∼ 1/(κtip · Un,tip).

The estimated or average slope δ ≈ 0.71 is shown as a black solid line.

End-splashing mode

When χ is large enough (see Figure 12 for precise values), conical end formation is

replaced by a small finger that is emitted from the tip, nearly perpendicular to the axis of

symmetry or z-axis. This behavior persists even in the highly conducting drop limit of large

χ. The interface shape near the ends eventually evolves into a ’snail-head’ that forms in

the vertical direction. We call this the ‘end-splashing mode’. Representative examples of

end-splashing are plotted in the top two panels of Figure 9. For these simulations, N = 320

and the profile is well resolved up to the point when bulbous ends first form, which marks

the onset of snail-head finger formation (see bottom panel). Resolution studies of the fully
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FIG. 9. Breakup of a viscous drop for Q = 10 and Eb = 0.26 with χ = 10 in upper panel

(t = 0, 0.25, 0.49, 0.74, 0.98, 1.23, 1.47, 1.66, 1.77, 1.83, 1.86, 1.88, 1.90, 1.92, 1.94) and χ = 30 in the

middle panel (t = 0, 0.30, 0.60, 0.90, 1.20, 1.35, 1.50, 1.56, 1.58, 1.59, 1.61). The inset of the middle

panel show local finger formation before breakup for χ = 30. The lower two panels show tip profiles

at different resolution N for χ = 30 at times before (left) and after the snail head is formed (right).

The profiles are well-resolved, at least up to the onset of snail formation.

developed snail head profile, e.g. at the final time in the upper panel of Figure 9, show

similar shapes, but slightly decreased snail head length, as resolution is increased. In a 3D

view, the drop end looks like a disk or nearly flat cone with a ring rim. This is similar to

the so-called dimple formation and lobe-breakup solution reported in Karyappa et al. [50]

(see their figure 11 for example). This interface morphology is distinctly different from that

observed in Taylor [8], Betelú et al. [14], Grimm and Beauchamp [68] and Fontelos et al.

[15], where a Taylor-cone-like solution first develops, then is followed by the ejection of a

thin fluid thread in the axial direction.

For highly conducting fluids, similar breakup behavior has been reported in the experi-

ments and numerical simulations of Karyappa et al. [50] which have NaCl added to the drop

21



phase, suggesting that ions in the drop may contribute to the fingering instability. More

recently, Mohamed et al. [69] observed a similar end-splashing mode in experiments on

conducting fluids for a pendant drop problem, although there it was attributed to the effect

of a more viscous fluid in the surrounding medium. In the current study, this behavior is

also obtained when the viscosity ratio is one. The middle panel of Figure 9 shows a similar

fingering instability for the larger value χ = 30, except that a narrower finger is formed.

Our numerical results show a trend of decreasing finger width with increasing χ.

Open end stretching

When both χ and Q are both moderate in size (roughly of the order 100 to 101) our model

exhibits relatively long drops, i.e., with ǫ = b/l < 0.01. One such example is presented in

Figure 10 for Eb slightly larger than the critical value for nonexistence of steady sates. The

top two panels show the drop shape and interface potential, respectively, while the bottom

panel plots the maximum normal velocity. As it evolves, the drop forms a cylindrical central

thread and the electrostatic field is nearly uniform and directed along the axis of symmetry.
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FIG. 10. Breakup of a viscous drop for Q = 5 and Eb = 1.65 with χ = 0.25. Top: Drop profiles at

times t = 0, 1.73, 29.31, 32.14, 33.56, 34.41. Middle: interfacial potential φs versus s, at the same t

as top. Bottom: maximum normal velocity versus t.
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During the evolution, the normal velocity decreases and the drop nearly settles into an

elongated steady state. However, the elongational velocity is reestablished after about t ≈ 30

as the electric traction overwhelms surface tension. Two ‘blobs’ develop at the drop ends

in a manner similar to the initial stages of the end-splashing mode in Figure 9. However,

due to its highly elongated cylindrical thread, we classify this to be a third breakup mode,

‘open end stretching’. The simulation in Figure 10 was stopped when the drop aspect ratio

exceeded 100.

Summary of breakup modes

We summarize our results in Figures 11 and 12. Figure 11 shows numerically determined

curves in Eb − χ space that separate regions where steady drop shapes exist (or S-regions)

from those with purely unsteady dynamics (U -regions). Toward the conducting drop limit,

i.e., for sufficiently large Q, the U -region is roughly independent of χ and occurs above

Eb ≈ 0.22. For moderate or small Q, a narrow S-region occurs when χ is sufficiently small,

i.e., as the perfect dielectric limit is approached. Alternatively, Figure 12 plots the phase

diagram in Q − χ space with a fixed electric field strength Eb = 0.5. The behavior in the
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FIG. 11. Boundaries separating steady (S-region) and unsteady (U -region) solutions in the Eb−χ

plane for various Q.

23



U -region is further classified by breakup mode. When Q . 15, we find the S-region for

small χ and end-splashing breakup modes (Figure 12(a)) for large χ, while for χ in between

we find open end stretching modes as shown at example point Figure 12(c). When Q & 15,

conical end solutions are found for sufficiently small χ (Figure 12(b)), consistent with the

asymptotic theory in Appendix C2, whereas for larger χ we find end-splashing breakup

modes.
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FIG. 12. Phase diagram of steady shapes and breakup modes in Q − χ space with Eb = 0.5.

Interface shapes at markers (a)-(c) on the phase diagram are shown in panels at right and below.

(a) End-splashing (Q = 5, χ = 10), (b) conical end formation (Q = 20, χ = 2) and (c) open end

stretching (Q = 10, χ = 0.5)

We conclude this section by noting that only the three aforementioned breakup modes

are observed in the current study when the viscosity ratio is unity, while the well-known

pinch-off breakup mode is expected to also exist for λ < 1, which is outside of the scope of

this work.

24



V. CONCLUSION

We have developed a robust and accurate numerical method to evaluate Green’s functions

for the linearized Poisson-Boltzmann equation and applied it to solve the moving boundary

problem for Stokes flow, including electrostatic forces. The method is used to investigate

the steady deformation of an electrolyte drop suspended in an insulating fluid medium, for

viscosity ratio λ = 1. We demonstrate that the conducting drop limit can be approached

through either Q → ∞ or χ → ∞, and in these limits, the electric field inside the drop

vanishes. For large but finite Q, however, the electric field inside the drop is nonzero and

can contribute to the deformation. The perfect dielectric drop limit is χ → 0, and for

small χ we find that a highly elongated steady drop is possible. For given imposed field

strength Eb, the presence of electrolyte enhances the deformation, and increasing χ leading

to more deformed drops. When the drop is long and slender, results from our full numerical

simulations agree well with approximate solutions based on slender body theory. Finally, we

study drop breakup behavior by choosing parameters in the regime where steady solutions no

longer exist. In addition to conical end formation, we find other two breakup modes, which

we call ‘end-splashing’ and ‘open end stretching’. The type of break up depends on parameter

values and an example phase diagram is presented which illustrates the dependence on two

of those parameters (Q and χ), for fixed Eb.
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Appendix A: Computation of axisymmetric Green’s functions and their derivatives

In this section, we present the derivatives of the axisymmetric Green’s functions (24) and

(22). Gradients of the axisymmetric Green’s function for Laplace’s equation are given by

∂G0

∂z
= − (z − z0)k

3E(k)

8π(rr0)3/2(1− k2)
, (A1)

∂G0

∂r
= − k3

8π(rr0)3/2

[(

r − r0
1− k2

− 2r0
k2

)

E(k) +
2r0
k2

K(k)

]

, (A2)

where K(k) is the complete elliptic integral of the first kind (see (23)) and

E(k) =

∫ π/2

0

√
1− k2 cos2 θdθ (A3)

is the complete elliptic integral of the second kind. For the axisymmetric Green’s function

Gχ of the modified Helmholtz equation, we find that the Green’s function gradient is given

by

∂Gχ

∂z
=

kz
2π(rr0)1/2

∫ π/2

0

1 + Λ (1− k2 cos2 θ)
1/2

(1− k2 cos2 θ)3/2
exp

(

−Λ
[

1− k2 cos2 θ
]1/2
)

dθ, (A4)

∂Gχ

∂r
=

1

2π(rr0)1/2

∫ π/2

0

1 + Λ (1− k2 cos2 θ)
1/2

(1− k2 cos2 θ)1/2

(

kr
1− k2 cos2 θ

− k

2r

)

× exp
(

−Λ
[

1− k2 cos2 θ
]1/2
)

dθ. (A5)

For the general calculations of Green’s functions for Laplace equation, details can be found

in Pozrikidis [61].

In table I to III, we show data from a computation of Gχ comparing the Gauss-Chebyshev

method and Gauss-Trapezoidal method (or Alpert quadrature), for χ = 0.1, 1, 10, and

different n or number of quadrature points. The points of evaluation are (z0, r0) =

(cos(π/4), sin(π/4)), (z, r) = (cos(π/4+π/4096), sin(π/4+π/4096)), so that (z, r) is slightly

different from (z0, r0). When (1 − t2)−1/2 is treated as a weight function in (25), the inte-

gration, for a regular function f(x), can be done by Gauss-Chebyshev quadrature

∫ 1

−1

f(t)

(1− t2)1/2
dt =

π

n
Σn

j=1f(tj,n) +
2π

22n(2n)!
f (2n)(η), (A6)

for some −1 < η < 1 and

tj,n = cos

(

2j − 1

2n
π

)

. (A7)
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TABLE I. χ = 0.1, Gauss-Trapezoidal parameters j = 7, k = 6, n = j + k +m

n
Gauss-Trapezoidal Gauss-Chebyshev

Gχ Gχ
z Gχ

r Gχ Gχ
z Gχ

r

16 1.95602152 207.50604021 -208.60234657 1.95602514 207.50604303 -208.60234683

32 1.95602152 207.50604021 -208.60234657 1.95602243 207.50604261 -208.60234833

64 1.95602152 207.50604021 -208.60234657 1.95602175 207.50604218 -208.60234839

128 1.95602152 207.50604021 -208.60234657 1.95602158 207.50604176 -208.60234809

256 1.95602152 207.50604021 -208.60234657 1.95602154 207.50604134 -208.60234770

512 1.95602152 207.50604021 -208.60234657 1.95602153 207.50604093 -208.60234730

1024 1.95602152 207.50604021 -208.60234657 1.95602153 207.50604057 -208.60234693

TABLE II. χ = 1

n
Gauss-Trapezoidal Gauss-Chebyshev

Gχ Gχ
z Gχ

r Gχ Gχ
z Gχ

r

16 1.66552053 207.50556904 -208.52289051 1.66588210 207.50585107 -208.52291721

32 1.66552054 207.50556904 -208.52289050 1.66561085 207.50580881 -208.52306613

64 1.66552056 207.50556904 -208.52289048 1.66554306 207.50576654 -208.52307180

128 1.66552057 207.50556904 -208.52289048 1.66552612 207.50572433 -208.52304161

256 1.66552057 207.50556904 -208.52289048 1.66552191 207.50568240 -208.52300272

512 1.66552057 207.50556904 -208.52289048 1.66552087 207.50564156 -208.52296267

1024 1.66552057 207.50556904 -208.52289048 1.66552063 207.50560466 -208.52292600

For χ = 0.1, both quadrature methods work well, however, Gauss-Trapezoidal quadrature

is more accurate than Gauss-Chebyshev for moderate and large χ, as seen in Table II and

III. In particular, when χ = 10, it is seen that convergence is poor for the Gauss-Chebyshev

method. For example, Gχ
r obtains only one digit of precision at the largest n. In this paper,

we therefore employ Gauss-trapezoidal quadrature since it has performed well in our tests.

We have not performed an extensive investigation of quadrature methods, as this is beyond

the scope of current paper.
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TABLE III. χ = 10

n
Gauss-Trapezoidal Gauss-Chebyshev

Gχ Gχ
z Gχ

r Gχ Gχ
z Gχ

r

16 1.12249190 207.47248568 -208.10737309 1.15507371 207.50023604 -208.11656235

32 1.12249346 207.47248566 -208.10737197 1.13128003 207.49634418 -208.12532268

64 1.12249500 207.47248564 -208.10737086 1.12472887 207.49220608 -208.12550479

128 1.12249602 207.47248562 -208.10737012 1.12305031 207.48800774 -208.12247820

256 1.12249628 207.47248562 -208.10736994 1.12262964 207.48382016 -208.11859296

512 1.12249621 207.47248562 -208.10736999 1.12252599 207.47973719 -208.11458941

1024 1.12249620 207.47248562 -208.10737000 1.12250164 207.47604760 -208.11092268

Appendix B: Small deformation theory

Small deformation analysis of an electrolyte droplet immersed in a dielectric fluid and

deformed by a nonuniform electric field is provided by [46], from which the following solution

for a uniform field can be easily recovered. When the drop is spherical, the general solution

for the electric potential is given in spherical radial and polar coordinates r̄, θ̄ by

φ1 = −A1(r̄) cos(θ̄), φ2 = −
(

1− A2

r̄3

)

r̄ cos(θ̄) (B1)

with

i1(x) =
x cosh(x)− sinh(x)

x2
, (B2)

i2(x) =
(x2 + 3) sinh(x)− 3x cosh(x)

x3
, (B3)

A1(r̄) =
3i1(χr̄)

(Q+ 2)i1(χ) +Qχi2(χ)
, (B4)

A2 =
(Q− 1)i1(χ) +Qχi2(χ)

(Q+ 2)i1(χ) +Qχi2(χ)
. (B5)

When deformability is included, first order perturbation can be used to approximate the

shape of the drop. Assuming the shape is perturbed slightly when Eb ≪ 1, [46] derived an

expression for the deformation

Df ≈ 3Ebh(χ,Q)

4 + Ebh(χ,Q)
≈ 3

4
Ebh(χ,Q) +O(E2

b ) (B6)
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where

h(χ,Q) =
1

12Q

[

(Q− 1)(1 + 2A2)
2 + (χ2 + 1−Q)A2

1(r = 1)Q
]

. (B7)

It is instructive to note some limits in these formulas. First consider the limit of a conducting

drop: as Q → ∞ or χ → ∞, we have φ1(r̄) = 0 and φ2(r̄) = (r−2 − r) cos θ. Inside the

drop, both φ1r̄ and φ1θ̄ tend to zero, that is, the electric field is zero for r̄ < 1, but on the

drop surface there is a nonzero normal component given by Qφ1r̄ |r̄=1= φ2r̄ |r̄=1= −3 cos θ̄.

The surface deformation function satisfies limχ→∞ h(χ,Q) = (12Q)−1(9(Q−1)+9Q−1), and

limQ→∞ h(χ,Q) = 3/4. In the limit χ → 0 of a dielectric drop, φ1(r̄) = −(3r/(Q+ 2)) cos θ

and φ2(r̄) = [(Q− 1)/(Q+2)](1/r2− r) cos θ, from which the electric field is easily obtained

by differentiation. The surface deformation function satisfies limχ→0 h(χ,Q) = (3/4)[(Q −
1)/(Q+ 2)]2.

Appendix C: Slender body analysis

We carry out slender-body analysis on the boundary-integral equations, following Stone

et al. [13],. Define a slenderness parameter ǫ = b/l, where l and b are the half length and

half width of drop, respectively. The existing dimensionless equations are adapted for the

slender-body scales by making the substitution

S → ǫ

ν
Ŝ, z → 1

ν
ẑ, (C1)

where ν = R/l and variables with a hat are O(1).

For a slender drop, i.e., ǫ = b/l ≪ 1, the electric field inside the drop is to leading order

in the axial direction, i.e., Et ≈ E(z) = νÊ(ẑ). As a result, the normal stress balance (11)

simplifies to

Eb(Q− 1)

2
(QE2

1n + E2
t ) +△p =

Eb(Q− 1)ν2

2ǫ2
(QÊ2

1n + ǫ2Ê2) +△p̂

≈ ν

ǫŜ
− ǫνŜẑẑ −

α

2
φ2
1, (C2)

where r̂ = Ŝ(z) is the drop surface shape and △p̂ is the constant pressure difference between

drop interior and exterior. The second term on the right hand side of (C2) is the contribution

to surface tension from the axial curvature, which is commonly retained despite being higher
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order. Since ∇ ·E = −χ2φ1, the internal field can be estimated to leading order as

Êr̂ ≈ −1

2
ǫ2Ŝ

(

Êẑ + ν−2χ2φ1

)

, (C3)

hence (see also [13]),

Ê1n ≈ − ǫ2

2Ŝ

((

Ŝ2Ê
)

ẑ
+ ν−2χ2Ŝ2φs

)

. (C4)

The potential exterior to the slender drop is approximated following [67]. Starting from

the boundary integral representation of the exterior potential, we subtract (14) from (13)

to obtain

φ1(x0)− φ∞ +

∫

S

φ1

(

∂Gχ

∂n
− ∂G0

∂n

)

dS =

∫

S

∂φ1

∂n

(

Gχ −QG0
)

dS, (C5)

which is equivalent to the integral-equation used in [13, 22] when χ = 0. Following [70], we

focus on the contribution of the integral from ǫŜ ≪ |ẑ − ẑ0| ≪ 1. For a point on the drop

centerline (0, z0), the Green’s function (24) is expanded before evaluating along drop surface

r̂ = Ŝ,

Gχ = ν
e

(

−
χ
ν [(ẑ−ẑ0)2+ǫ2r̂2]

1/2
)

2 ((ẑ − ẑ0)2 + ǫ2r̂2)1/2
=

ν − χ [(ẑ − ẑ0)
2 + ǫ2r̂2]

1/2
+ χ2

2ν
[(ẑ − ẑ0)

2 + ǫ2r̂2]

2 ((ẑ − ẑ0)2 + ǫ2r̂2)1/2
+ · · ·

(C6)

Substituting into (C5) yields

φ1(ẑ0)− φ∞ +
χ2

4ν2

∫ 1

−1

φ1
ǫ2Ŝ2

(

(ẑ − ẑ0)2 + ǫ2Ŝ2
)1/2

dẑ

=− (1−Q)

∫ 1

−1

ŜÊ1n

2
(

(ẑ − ẑ0)2 + ǫ2Ŝ2
)1/2

dẑ − χ

2ν

∫ 1

−1

Ê1nŜdẑ + · · · (C7)

which is further evaluated to be

φ1 − φ∞ +
ǫ2χ2 ln(1/ǫ)

2ν2
φ1Ŝ

2

=(1−Q)
ǫ2 ln(1/ǫ)

2

(

(Ŝ2Ê)ẑ + ν−2χ2Ŝ2φ1

)

− χ

2ν

∫ 1

−1

Ê1nŜdẑ + · · · . (C8)

This is coupled with the equation for drop volume,
∫ 1

−1

Ŝ2dẑ =
4ν3

3ǫ2
, (C9)

which readily yields ν = ǫ2/3.
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1. Electric field inside a spheroid

For a spheroid, Ŝ2+ ẑ2 = 1 and equation (C8) with χ = 0 is satisfied by a uniform electric

field E1D,

E1D =
1

1 + ǫ2 ln(1/ǫ) (Q− 1)
∼ 1− ǫ2 ln(1/ǫ) (Q− 1) + · · · (C10)

which agrees with the approximation in Stone et al. [13]. For order one χ > 0 and χ/ν ≫ 1,

(C8) at leading order (after taking one derivative with respect to ẑ) becomes

−Ê1D +
1

ν
≈ −Q

ǫ2χ2 ln(1/ǫ)

2ν2

(

φ1Ŝ
2
)

ẑ
. (C11)

Assume Ê1D ∼ ν−1 +Ψ(ẑ) so that φ1 ∼ −ν−1ẑ −
∫ ẑ

Ψ(s)ds. After denoting F =
∫ ẑ

Ψ(s)ds

we arrive at

−F = Q
ǫ2χ2 ln(1/ǫ)

2ν2

[

(1− ẑ2)
(

ν−1ẑ + F
)]

. (C12)

This is rewritten as

F = −K
ẑ

ν

1− ẑ2

1 +K(1− ẑ2)
∼ −K

ẑ

ν
(1− ẑ2) (C13)

where K = Qχ2ǫ2 ln(1/ǫ)
2ν2

≪ 1. After some algebra, we arrive at an approximation for the

electric field inside the drop, which holds for Q ≪ ν2

χ2ǫ2 ln(1/ǫ)

Ê1D = ν−1 + Fẑ − ǫ2 ln(1/ǫ) (Q− 1) ν−1 + · · ·

=
1

ν
−Q

ǫ2χ2 ln(1/ǫ)

2ν3
(1− 3ẑ2)− ǫ2 ln(1/ǫ) (Q− 1)

ν
+ · · · (C14)

After using E = νÊ, the electric field is recovered under the original scaling to yield

E1D ≈ 1− ǫ2 ln(1/ǫ) (Q− 1)−Q
ǫ4/3χ2 ln(1/ǫ)

2
(1− 3(ǫ2/3z)2). (C15)

This is consistent with Stone et al. [13] for χ = 0, and the term with χ provides a correction

due to the presence of ions. The field is used to compare to the full boundary-integral

simulation when the drop is elongated.

2. Drop with conical ends

For a drop with conical end, locally Ŝ ∼ 1− ẑ and ǫ = tan θ0. It is seen in normal stress

balance (C2) that E ∼ (1− ẑ)−1/2, then (C8) shows the terms with χ serve as higher order
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corrections, and we still have the same equation from Stone et al. [13]

Q = 1− 8

3 tan2 θ0 ln(tan θ0)
, (C16)

which reflects a local balance of force contributions from the electric field and surface cur-

vature. Therefore, to leading order, the formation of a conical drop is independent of χ, i.e.

the influence of ions. Thus, as for a drop without electrolyte, a conical end is only expected

when Q is sufficiently large regardless of χ. To be specific, Stone et al. [13] gives a minimum

Q around 15.5, above which conical tip is possible.

Finally, we note that the slender drop shape can be analyzed by coupling (C8), (C2) and

(C9) (see Stone et al. [13], Sherwood [71], Rhodes and Yariv [72]). Our preliminary results

show a mild singularity between a conical and a rounded end exists (same in [71, 72]) and

Eb(Q−1)ǫ7/3 ln(1/ǫ) ∼ O(1). However, we do not pursue this further in current study as the

predicted shape using slender-body is usually in poor comparison with the full simulation.
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