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Breakup of a poorly conducting liquid thread subject
to a radial electric field at zero Reynolds number

Qiming Wanga)

Department of Mathematical Sciences, New Jersey Institute of Technology,
New Jersey 07102, USA

(Received 12 March 2012; accepted 11 September 2012; published online 8 October 2012)

We study the breakup of an axisymmetric viscous liquid thread with finite conductivity
immersed in another viscous fluid, which are confined to a concentrically placed
cylindrical electrode that is held at a constant voltage potential. The annular fluid
between the core thread and the electrode is assumed to be insulating. The flow then
is driven by a radial electric field together with capillary and viscous forces. A linear
stability analysis is carried out when the perturbation on the thread interface is small
and nonlinear evolution and satellite drop formation near pinch-off are investigated
by direct numerical simulations based on boundary integral method. The numerical
results reveal that satellite formation as well as breakup time is affected significantly
when the effect of charge convection is important compared with electric conduction.
For large conduction, the evolutions of the thread are close to those obtained for a
perfectly conducting core fluid. Finally, we show numerically that the local dynamics
may be altered when the conduction is weak compared to the perfect conductor limit.
New scalings near breakup are obtained from a long wave model. C© 2012 American
Institute of Physics. [http://dx.doi.org/10.1063/1.4757388]

I. INTRODUCTION

In the absence of electric fields, the dynamics of uncharged liquid threads has been studied
extensively. Linear theory reveals that the thread is unstable subject to a long wave perturbation.1, 2

The liquid thread evolves into nonlinear regime eventually, which can only be tracked by numerical
simulations. It is observed that a series of small droplets forms as the interface thins to rupture,
which leads to a finite-time singularity. Further study on local dynamics of jet breakup was first
performed by Refs. 3 and 4 on a Navier Stokes jet and Ref. 5 on a Stokes jet, respectively, where self
similar solutions are constructed analytically. Numerical evidence of self-similar pinching solution
on inviscid and two phase Stokes flows was shown by Refs. 6 and 7, for example. An extensive
review of jet dynamics and breakup can be found in Ref. 8 and the references therein.

The stability and dynamics of an electrified jet is more complicated, where either an axial
or radial electric field can be applied. For axial electric fields, linear theory was derived in early
studies, for example, in Refs. 9 and 10, showing a stabilizing effect of axial electric fields, which
would lead to a long formation of jet. The effect of charge relaxation at jet surface was discussed
for different viscosity regimes in Ref. 11. Recently, an asymptotic model assuming a slender fluid
jet is studied in the axial field case in Ref. 12, where both axisymmetric and sinuous modes are
considered and good agreement with the full linear theory is obtained. When a radial electric field
is applied, the linear stability analysis for perfectly conducting jets has been carried out in Refs. 13
and 14, where long (short) waves are shown to be stabilized (destabilized). The stability of a poorly
conducting jet was studied15 using a leaky dielectric model (see Refs. 16 and 17) in axisymmetric
configuration, which showed electric conduction and relative permittivity affects the growth rate and
the most unstable modes, even though the perfect conductor limit provides a good approximation
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under some circumstances. A discussion on the validity of slender jet model is also carried out there.
Furthermore, the temporal linear stability analysis of a charged coflowing jet with two immiscible
viscous fluids in radial electric fields was considered in Ref. 18 with also a leaky dielectric model.
It is shown that low conductivity/relative permittivity will reduce growth rate when the viscosity
is moderate, while the influence is small when the jet is nearly inviscid, in which case electric
shear stresses at the interface cannot be balanced and hence the jet behaves like a perfect conductor.
Numerical investigation on the problem of a Newtonian viscous perfectly conducting thread in radial
electric fields was studied by Refs. 19 and 20 using a one-dimensional approximation, by Ref. 21
using both 1D and 2D simulations and by Refs. 22 and 23 using boundary integral method for a
single inviscid jet and two phase Stokes flow inside a cylindrical electrode, respectively. The results
reveal a larger (volume) satellite drop formation when the field is applied radially. Meanwhile the
main drops are observed to be elongated radially in the direction of applied field and the breakup
is in general retarded. In addition, López-Herrera et al.24 studied the problem experimentally on
the influence of viscosity and electric field strength on the breakup dynamics. Good agreement is
obtained by comparing with one dimensional results when the electric field is not too large, assuming
the electrode is sufficiently far away from the liquid interface initially. Sufficiently large field, on the
other hand, usually leads to nonaxisymmetric instability. When the interface position is sufficiently
close to the electrode initially, pinching may be suppressed and fluid would tend to touch the outer
electrode (tube wall) due to the electrostatic attraction.20, 23 Furthermore, electrokinetic effect should
be taken into account when the surface ion is present at interface or an electric double layer can
be identified near the electrode. The linear theory for such a setting was first discussed in Ref. 25
for a thin annular electrolyte film and a general model on electrohydrodynamics was reviewed in
Ref. 17. Recently, Conroy et al.26 studied the nonlinear dynamics of a thin annular electrolyte film
attached to the interior of a cylindrical electrode which extends the electrostatic model in Ref. 23.
The two studies both show a finite-time singularity (wall touch down solution) for the sharp rupture
compared to the infinite-time singularity studied in Refs. 27 and 28 for pure capillary film drainage.
A non-uniform steady state solution is also obtained in Ref. 26 where the Debye length is small
relatively to the undisturbed film thickness. A slender electrolytic jet with hydrodynamically passive
surrounding fluid is considered recently in Ref. 29, where pinching solution and satellite formation
are analyzed by showing extensive numerical results, which shows dynamics can be modified in a
number of ways that depends on different electric parameters. But the local dynamics is shown to
remain the same as non-electrified case and is described by a self similar solution. The problem is
complicated due to the richness of parameters.

However, apart from the reduced asymptotic model, few studies have been done to discuss the
role of finite conduction on nonlinear dynamics of the full axisymmetric problem, when a radial
electric field is applied. In this paper, we aim to investigate the situations for a poorly conducting
thread immersed in another viscous fluid using a leaky dielectric model. We first extend the linear
stability analysis in Ref. 15 to include a second fluid surrounding the liquid thread at zero Reynolds
number. Similar to the findings in Ref. 15, the dominant modes for long waves switch trend (in
our case, from order one to a quadratic trend) for a single thread. However, this switching behavior
disappears once a second fluid is added. In general, the growth rate, as described in Ref. 15, is
reduced by decreasing conductivity/permittivity of the core fluid. But the growth rate changes little
when two fluids are comparably viscous, hence little information is delivered on how imperfect
electric conductivity and permittivity influences the dynamics of two phase system in this case. We
address this by performing a direct simulation. The derived linear theory is also used to valid our
code later. Then we show the nonlinear evolutions of the system is significantly affected by differing
these electric parameters even the linear theory shows little change when both two fluids are highly
viscous. In particular, breakup time and interface shape are dependent on those electric parameter
values. We do the simulation by using a boundary integral method to simulate both electrostatic
and Stokes flow problems, which extends the study in Ref. 23 where only perfect conductor limit
is considered. In current study, we only report the results for equal viscosity ratio, λ = 1. Near
breakup, satellite formation differs when the surface charge convection becomes important. It is
noticed that even in the case of a radial electric field, significant shear stresses are produced when
conductivity (relative permittivity) is small or moderate. Those shearing forces must be responsible
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for the various interface shapes at pinching. In these cases, local pinching dynamics might be altered,
since we show numerically that the electric force becomes important compared to capillary force
in the necking region. We finally comment that a long wave model which retains annular viscous
fluid that is much less viscous than the core gives new scalings on pinching. To see this from full
problem, a more robust and sophisticated code is needed and hence left for future investigation.

The rest of the paper is organized as follows. The equations utilizing a leaky dielectric model
are introduced in Sec. II. Full linear theory for the axisymmetric problem with arbitrary viscosity
ratio is derived and studied in Sec. III. Section IV presents the numerical method based on boundary
integral techniques. The numerical solutions are discussed in Sec. V, and finally, concluding remarks
are given in Sec. VI.

II. MATHEMATICAL FORMULATION

We consider the dynamics of a viscous incompressible two-fluid system arranged in a core-
annular configuration inside a cylindrical tube of constant circular cross section of radius b. Cylin-
drical polar coordinates x = r er + zez are used with the z-axis along the pipe axis. A schematic of
the problem is provided in Figure 1. Fluid 1 occupies the core region defined by 0 < r < S(z, t),
while fluid 2 occupies S(z, t) < r < b, where we have assumed axisymmetry (all variables are
independent of the azimuthal angle). In what follows the effect of gravity is neglected which is
a good approximation when the ratio of gravitational to capillary forces is small (see Ref. 27). A
potential difference V0 is applied between the liquid thread and the cylindrical tube (outer electrode)
at the beginning. In the unperturbed state, surface charge density at the interface is created by the
radial field, with the liquid bulk being electrically neutral. We define the electric field by Ei = −∇φi

where φi(r, z, t) is the voltage potentials in region i.

A. The electric field

Laplace’s equation is satisfied in both regions

∇2φi = 0 or ∇ · Ei = 0, i = 1, 2 (1)

with constant potential boundary condition on the outer electrode r = b, φ2(b, z, t) = 0 (assuming
the electrode is grounded without loss of generality).

On the interface r = S(z, t),

φ1 = φ2, i.e., t · E1 = t · E2, (2)

ε2n · E2 − ε1n · E1 = q

ε0
, (3)

where t and n denote unit tangential and normal vector, respectively; εi is the dielectric constant in
two phases and q is surface charge density, which is determined by the following equation:

qt + us · ∇sq − qn · (n · ∇) us = σ1 E1n − σ2 E2n, (4)

μ1 1, σ1

μ2 2, σ2

φ = 0

FIG. 1. Schematic of the problem geometry.
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where Ein = −n · ∇φi , σ i is the conductivity of phase i and subscript s denotes the surface evalua-
tion. For the rest of study we would further assume the annular fluid to be insulating, namely, zero
conductivity, σ 2 = 0.

B. Fluid motion in the presence of electric field

In the zero Reynolds number limit the flow in regions 1 and 2 is governed by the Stokes
equations:

−∇ pi + μi∇2ui = 0, ∇ · ui = 0, i = 1, 2, (5)

where ui = ui er + wi ez is the fluid velocity, pi is the pressure, and μi is the fluid viscosity in each
phase. The no-slip and no-penetration boundary condition at the wall requires

u2(b, z, t) = w2(b, z, t) = 0. (6)

It remains to prescribe all other boundary conditions on the moving interface r = S(z, t). These
are the usual kinematic condition

ui = St + wi Sz, on r = S(z, t), (7)

and the tangential and normal stress balances

[t · T · n]1
2 = 0, (8)

[n · T · n]1
2 = −γ κ, (9)

where t = (Sz er + ez)/(1 + S2
z )1/2 and n = (er − Sz ez)/(1 + S2

z )1/2 are the unit tangent and normal
(pointing into region 2) at any point on the interface, κ is the curvature at that point, γ is the surface
tension assumed to be constant and the notation [·]1

2 denotes a jump in a quantity as the interface
is crossed from the core to the annulus. The stress tensor T has hydrodynamic and electrostatic
(Maxwell stress) contributions which we write as T = σ − M, where

σ = −p I + μ(∇u + ∇uT ), M = εiε0(E E − 1

2
I |E|2), (10)

with I denoting the identity matrix and εi the electrical permittivity of fluid i (the permittivity of
free space is ε0 ≈ 8.8542 × 10−12 F/m). Specifically, the discontinuity of the electric field across
the interface causes a jump of stress [M · n]1

2 given by

� f e = ε2ε0

2

([
E2

2n − ε1

ε2
E2

1n −
(

1 − ε1

ε2

)
E2

t

]
n + 2

(
E2n − ε1

ε2
E1n

)
Et t

)
. (11)

The stress balance on the interface can be rewritten as

[T · n]1
2 = [σ · n]1

2 − � f e = −γ κn. (12)

C. Nondimensionalization

The system are nondimensionalized by using the undisturbed core radius a for lengths, γ /μ1

for velocities, γ /a for the pressure, μ1a/γ for time, V0 for the voltage potential, and ε2ε0V0/a for
surface charge density. The ratio of the physical property and dimensionless parameters are then
denoted by

d = b

a
, λ = μ2

μ1
, Q = ε1

ε2
, Eb = ε0ε2V 2

0

γ a
, � = aμ1σ1

ε0ε2γ
, (13)

where Eb is an electric Weber number measuring the ratio of electrical to capillary pressures.23
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The Laplace equations are unchanged after nondimensionalization. The boundary conditions
read as φ2 = 0 at r = d, and on the interface,

φe
1 = φe

2, (14a)

n · E2 − Qn · E1 = q, (14b)

while the stress jump reads

� f e = Eb

2

([
E2

2n − Q E2
1n − (1 − Q) E2

t

]
n + 2q Et t

)
, (15)

together with the conservation law for q

qt + us · ∇sq − qn · (n · ∇) us = �E1n, (16)

where � is a dimensionless measurement of conductivity of core fluid. Equations for fluid motion
are similar to the ones used in Ref. 23 and are not repeated here for brevity.

In the case of Stokes flow, capillary time scale is given by balancing surface tension and viscous
force, tc ∼ aμ1/γ , while the electric relaxation time te ∼ ε0ε1/σ 1. Therefore, the parameter �

= tc/te measures the ratio of flow to charge relaxation time scales. Perfect conductor case is recovered
if � → ∞, which indicates that the relaxation occurs much faster than hydrodynamic deformation,
hence the interface remains equipotential. On the other hand, in the limit � → 0, surface charges
are passively convected and stretched with deforming interface. In Sec. III, we will start to study the
effect of moderate or low � on the system by linearizing the problem.

III. FORMULATION OF LINEARIZED PROBLEM

Linear dispersion relations pertaining to the stability of poorly conducting viscous liquid threads
surrounded by a hydrodynamically passive region (air) and stressed by a radial electric field, have
been derived by Ref. 15 when the surrounding electrode has a finite radius. Our study focuses on
low Reynolds number flow and includes a viscous surrounding fluid with no base flows. Note that
σ 2 �= 0 would require a base flow in order to have a base steady state. Otherwise the linearized
electrostatic problem (without base flow) would be decoupled from fluid problem. Furthermore,
we define V0 = aq0/ε0ε2, where q0 is the surface charge density at steady state. This gives electric
Weber number as Eb = q2

0 a/ε0ε2γ . We consider the stability of the quiescent perfectly cylindrical
steady state (bars are used to denote base-flow quantities):

u j = 0, S = 1, φ2 = ln(d/r ), φ1 = ln(d), q = 1, [p] = 1 − Eb

2
. (17)

Perturbing about this state, linearizing the boundary conditions and assuming normal mode solutions
proportional to exp (ikz + ωt) allows for the problem to be cast into a rather simple eigenvalue system
to determine ω(k), with instability present whenever Real(ω) > 0. The perturbed interface position
is described as

r = S(z, t) = 1 + δη̂ exp(ikz + ωt), (18)

where δ is a small dimensionless number. Meanwhile, the flow is expressed in terms of a stream
function so that ui = −(1/r)∂ψ i/∂z, w j = (1/r )∂ψi/∂r and writing ψ j (r, z, t) = ψ̂(r ) exp(ikz + ωt)
provides the equation E4ψ̂i = 0, where the operator E2 = d2

dr2 − 1
r

d
dr − k2. The solutions are

ψ̂ j (r ) = r
(
E1 j I1(kr ) + F1 j K1(kr ) + E2 j r I0(kr ) + F2 j r K0(kr )

)
, (19)

where E1j, F1j, E2j, F2j are unknown coefficients; regularity of solutions at the cylinder axis r = 0
implies F11 = F21 = 0. The solution for the linearized perturbation potential φ̂i (r ) exp(ikz + ωt)
proceeds along similar lines and satisfies zero order modified bessel differential equation. Using
boundary conditions and combining charge transport equation, the general solutions are readily
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obtained,

φ̂1 = A1 I0(kr ), φ̂2 = A2 (I0(kr )K0(kd) − K0(kr )I0(kd)) , (20)

where

A1 = −ω(k F + G)η̂ + ik
(
ψ̂ ′

1 − ψ̂1
) |r=1G

k (ω(I0 F − Q I1G) − � I1G)
, (21)

A2 = −[ω(I0 + Qk I1) + �k I1η̂ + ik
(
ψ̂ ′

1 − ψ̂1
) |r=1 I0

k (ω(I0 F − Q I1G) − � I1G)
, (22)

with F and G defined as

F(k) = I1(k)K0(kd) + I0(kd)K1(k), (23)

G(k) = I0(k)K0(kd) − I0(kd)K0(k). (24)

The equations for fluid problem part are similar to those described in Ref. 23 and are summarized
below. At tube wall we have no slip and no penetration condition,

ψ̂2(r = d) = 0, ψ̂ ′
2(r = d) = 0. (25)

Continuity of velocities at fluid interface leads to

ψ̂1(r = 1) = ψ̂2(r = 1), ψ̂ ′
1(r = 1) = ψ̂ ′

2(r = 1). (26)

Then the modified tangential and normal stress balances are written as

(1 − λ)k2ψ̂1 − ψ̂ ′
1 + λψ̂ ′

2 + ψ̂ ′′
1 − λψ̂ ′′

2 + Ebik A1 I0(k) = 0, (27)

p̂2 − p̂1 + ik(1 − λ)ψ̂1 − 2ik(ψ̂ ′
1 − λψ̂ ′

2) = (1 − k2 − Eb)η̂ − Eb

2
φ̂2

2r , (28)

where φ̂2
2r is solved at the beginning of this section. The above system is to be solved for six

unknowns (Eij and Fij). After some computations we arrive at a linear and homogeneous system of
six equations for the unknown vector w = [E11, E21, E12, E22, F12, F22]T written in matrix form as

Aw = 0. (29)

The coefficient matrix is given in the Appendix A (derivations in a similar context in the absence of
electric fields can be found in Ref. 30, for example). For a non-trivial solution of (29), we require
det(A) = 0 and this provides the desired dispersion relation that can be solved to find the growth-rate
ω(k).

A. Long wave behavior

The long-wave limit is explored first in the case of a single Stokes jet, λ = 0, by taking k → 0.
This yields the following asymptotic relations:

ω ∼ 1

6
�1, for �1 > 0, (30)

ω ∼ �2

2�1
k2, for �1 < 0, �2 < 0, (31)

where �1 = 1 + Eb(3 − 4ln d), �2 = �(Eb(ln (d) − 1) − ln (d)). This switching mode is similar to
the results reported in Ref. 15 for a single Navier-Stokes jet that is poorly conducting. Our result (31)
can be obtained in their paper when Reynolds number tends to zero (square of inverse Ohnesorge
number in their notation). Figure 2 shows evidence of this switching from results of full linear
problem, where order one of growth rate that is independent of � is observed when �1 > 0 in
the left panel and a quadratic trend (this is shown in the inset of right panel for � = 10 in loglog
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plot where dashed line is long wave result) when �1, �2 < 0 for long waves in the right panel.
Furthermore, (30) and (31) imply the possibility to stabilize long waves. For example, provided Eb

> 1, the long waves are stabilized when

ln d >
1

4

(
3 + 1

Eb

)
. (32)

Finally, it is interesting to notice that in (30), whenever d < e3/4 ≈ 2.117, the electric field is always
destabilizing. The value is different from the one obtained in perfect conductor limit for absolute
destabilizing, which is e ≈ 2.718. The permittivity ratio Q may enter to influence at higher order
terms.

For two fluid system, λ > 0, however, the dominant mode follows a quadratic trend even though
�1 changes its sign as we found for λ = 0. The growth rate, as k → 0, is determined by the following
equation:

a0ω
2 + b0ω + c0 = 0, (33)

where

a0 = 4λ + 6k2 f (d), (34)

b0 = a0

2
� ln(d)k2 − f (d)(1 + Eb(3 − 4 ln(d)))k2, (35)

c0 = −� f (d)

2
(ln(d) + Eb(1 − ln(d))) k4, (36)

with f(d) = ln (d) − (d2 − 1)/(d2 + 1). The details of linear stability are investigated next.

B. The effect of electric fields on linear stability

In this section, we investigate the influence of electric fields on the thread stability by numerically
solving the linearized problem. Left panel of Fig. 2 depicts the effect of � on the linear dispersion
relation in limit of a single Stokes jet, i.e., λ = 0, for Q = 5, Eb = 0.192 and d = 5. These parameters
give positive value �1 in (30) and order one growth rate is observed at long waves as discussed
in Sec. III A. Clearly a decrease in � results in a decrease of growth rate for unstable modes. In
addition, it is evident that the most dangerous mode is now located at intermediate wave numbers
compared with the case of a perfect conductor20 in dashed line, where k = 0 is the most unstable
mode. In the right panel of Fig. 2, a larger Eb (such that �1 < 0) leads to switching of dominant
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mode for long waves which now follow a quadratic trend. Similarly, growth rate becomes smaller
as � gets smaller. For the parameters that yield a quadratic growth in long waves, those curves
become almost identical to those ones with a viscous external fluid included (λ = 0.001 in dotted
lines). Inspection of both panels also reveals that when � = 100, namely, the conductivity of liquid
thread is large, the linear growth rate for k > 0.4 is almost the same as the perfect conductor one
as expected. But the sensitivity is captured in the long wave length range where the difference is
obvious. Similarly, for fixed finite �, reduced relative electric permittivity Q results in a decreasing
growth rate (not shown) as showed in Ref. 15 for a single jet.

Next we turn to the general case of two viscous fluids, i.e., λ> 0. The effect of various parameters
is explored in Fig. 3 for Eb = 0.25, Q = 10, � = 10, d = 5, and λ = 0.25 unless otherwise indicated in
figure. Each of panel (a)–(e) depicts growth rate curves when one of these parameters varies with the
rest fixed. Similar to the perfect conductor limit, increasing the strength of electric fields extends the
range of unstable modes. Short waves become unstable while the long waves are stabilized, provided
that the dimensionless tube radius d is sufficiently far away from thread interface initially. In panel
(a) with d = 5 fixed, a stable region for small k at Eb = 4.5 emerges, while a wide range of unstable
short waves are obtained simultaneously. Increasing permittivity ratio Q seems not affecting growth
rate significantly for the unstable modes as seen in panel (b). As a result, both maximum growth rate
and cut off wavelength remain almost the same when Q varies. While the details of stable modes
might be different which is beyond the scope of current study. As mentioned for λ = 0, increasing
� increases growth rate; this also applies for λ = 0.25 in panel (c). That is likely saying that surface
charge convection creates additional tangential flow that stabilizes thread. However, as λ increases
further, large viscous drag from outer fluid reduces this effect and little changes in growth rate (not
shown). The influence of external viscous fluid is studied in panel (d) by varying the viscosity ratio λ,
where it is seen that growth rate reduces to a small level as λ becomes sufficiently large. As a result,
annular region is effectively rigid compared to core fluid region, which hinders the development of
perturbation. Tube radius d can also alter stability when the electrification level is fixed. Reducing
tube radius d results more intense fields in the annular region. On the other hand, flow velocity scale
becomes small as in the uncharged case.31 Panel (e) shows that overall growth rates become small
as d decreases as expected. Meanwhile the range of unstable modes is extended, which is similar to
the findings for perfect conductor in Ref. 23. In panel (f) the long wave result (33) is plotted together
with the full curve for different electrode locations, which show agreement in the portion of small
wavenumbers as expected.

Our results are in agreement with those discussed in Ref. 15 when the annular viscous effect is
small. However, linear problem shows that growth rate is insensitive to Q and � when the two fluids
have comparable viscosity. We show later by direct simulations that the breakup of liquid thread,
however, is affected significantly in the nonlinear regime.

IV. BOUNDARY INTEGRAL METHOD

The boundary integral method is employed to solve the problem of a viscous thread immersed
in another viscous fluid (see Refs. 31 and 23 for related studies). For the rest of our study, we only
consider the simple case when the two fluids have the same viscosity (λ = 1), where the interfacial
velocity is determined solely by the single layer potential as seen in (37)

uα(x0) = − 1

8π

∫
I

Mαβ(x, x0)� fβ(x)dl(x), (37)

where

� f = κn − Eb

2

([
φ2

2n − Qφ2
1n − (1 − Q) φ2

1t

]
n − 2qφ1t t

)
, (38)

with l(x) the arc length, κ the curvature of interface, q the surface charge density, and n(t) the unit
normal (tangential) vector. The expression for the stress jump across fluid interface can be found
in Ref. 17 which reviews mathematical formulations for leaky dielectric fluids. Mαβ in (37) is the
axisymmetric periodic Stokeslets which vanishes at tube wall, r = d,31 so that no slip boundary
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in figure. Panel (f) shows agreement of long wave results (33) on the results of full linear problem for different d.

condition is satisfied. The electrostatic potentials at thread surface, φ1 and φ2 when x0 is approached
from region 1 and 2, respectively, are determined by

1

2
φ1(x0) +

∫
I
φ1(x)Pn(x, x0)r (x)dl =

∫
I
φ1n(x)P(x, x0)r (x)dl, (39)

−1

2
φ2(x0) +

∫
I
φ2(x)Pn(x, x0)r (x)dl =

∫
I
φ2n(x)P(x, x0)r (x)dl, (40)

where P is the axisymmetric periodic Green’s function that vanishes at tube wall. In addition, due to
the assumption that solutions are L-periodic, we impose no flux conditions at z = 0 and z = L, i.e.,
φin(z = 0, r) = φin(z = L, r) = 0. Hence, axial images are chosen so that Pn(z = 0, r) = Pn(z = L,
r) = 0 is satisfied (also see the formulation in Ref. 23). By subtracting (40) from Q times (39) and
using φ1 = φ2 at interface, an equation for surface potential is obtained,

1 + Q

2
φ1(x0) + (Q − 1)

∫
I
φ1(x)Pn(x, x0)r (x)dl =

∫
I

q(x)P(x, x0)r (x)dl. (41)

Directly subtracting (39) from (40) then leads to an equation for φ1n,

φ1(x0) =
∫

I
((1 − Q)φ1n(x) + q) P(x, x0)r (x)dl, (42)

where q is solved from Eq. (16). The weak singularities in the kernels of the single-layer potential
terms can be handled by Gauss-log quadratures and the regular integrals computed by standard
Gauss-Legendre quadratures. Given interface shape and surface charge density q instantaneously,
φ1 (surface potential = φ2) and φ1n are readily to be obtained from (41) and (42), hence φ2n from
(14b).

V. SIMULATIONS ON NONLINEAR EVOLUTION AND DISCUSSION

A. Solution procedure

In this section, we study the nonlinear dynamics of charged threads through direct numerical
simulations with initial condition of the form r(z, 0) = a(1 + δcos (kz)) = aS(z, 0), q(z, 0) = 1, where
a is the unperturbed core thread radius and ka is the dimensionless wavenumber of the perturbation.
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Results for a �= 1 can be rescale to the ones with a = 1. We have chosen this form in order to make
comparison with previous studies.31, 32 The boundary conditions of electric potentials are mentioned
in Secs. II and IV: φ2(z, r = d) = 0, φ1(z, r = S) = φ2(z, r = S), Qφ1n(z, r = S) − φ2n(z, r = S)
= q, and φin(z = 0, r, t) = φin(z = L, r, t) = 0. Similarly, we have periodic boundary conditions
for surface charge density, qz(z = 0, t) = qz(z = L, t) = 0. Periodic Stokeslets Mαβ(x, x0) and
Green’s function P(x, x0) are computed as explained in Refs. 23, 32, and 33, where no slip and
constant potential boundary conditions are satisfied (see also Sec. IV). For-aft symmetry is imposed
additionally and solution of half period is plotted for various quantities. Given interfacial shape and
charge density at current time step, electric potential as well as its derivatives is calculated through
(41) and (42), which updates the instantaneous stress jump (38). Then fluid velocities at interface is
evaluated directly by (37), where no inversion of matrix is necessary since there is no double layer
potential term. To proceed to next time step, interface position (we typically trace the interface using
90–180 points in half period) is updated by using kinematic boundary condition with explicit Euler
method23, 34

dx
dt

= (u · n) n. (43)

Surface charge density q, solved in the same node points as those used in boundary integral method,
is then updated in Eq. (16) using finite difference method, where q is assumed to vary quadratically
between collocation points.34, 35 An implicit Euler scheme is used to advance q in time. This gain
more stability than explicit method when � small.

The boundary integral code is tested against full linear theory and has been previously used to
study the nonlinear evolution of a perfectly conducting thread inside a cylindrical tube in Ref. 23.
In particular, evidence is provided in the upper panel of Fig. 4, where computed growth rates (in
symbols) are compared with the results from linear theory (lines) for different wavenumbers. As
showed in Sec. III, the growth rate differs little for different � when the two fluids are comparably
viscous. Our numerical results for λ = 1 show good agreement on this by imposing the results on
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FIG. 4. (Upper panel) Linear growth rate test between numerical simulation and linear theory (solid curve) for Eb = 0.32,
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different conductivities as indicated in figure for ka = 0.5 and δ = 0.01. The most left curve is the uncharged case and solid
line is the case of perfectly conducting core.
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the same plot in Fig. 4, where triangle symbol stands for results with � = 100 and square is for
� = 10. Still, when � is moderate, e.g., � = 10 in Fig. 4, growth rate appears slightly smaller
than the linear theory when ka < 0.6, while slightly larger growth rate is obtained when ka > 0.6.
This deviation occurs faster and more significantly when � is smaller, in which case, additional
shear stresses produced by electric field quickly enter to play an important role. In addition, we start
by perturbing interface shape with initial charge density fixed, which is slightly different from the
setting in linearized problem (where we have perturbed q as well; agreement is better if we chose
initial q in our simulation as in linearized problem) and may affect the results for moderate and
small �, since then q will first slowly relax and adjust to the perturbed shape. The shear stresses
may not follow the linear theory exactly even though the perturbation is small (δ = 0.01 here). For
simplicity, we chose q(z, 0) = 1. In the lower panel of Fig. 4, we compare the time evolutions of
the minimum point of thread interface, Smin by differing �. As indicated in figure, the dashed line
is for a uncharged thread, the solid line is for a perfectly conducting thread, while the other two are
of finite conductivity, � = 100 in dashed-dot line and � = 10 in dotted line respectively. Charged
thread will breakup at a later time than the uncharged case, since electric force modifies normal
stress and delay the thinning process as explained in Ref. 23. In order to make comparison with
perfect conductor case from previous study, we notice that the relation of electric Weber number
between Ref. 23 and current study is

Eb = E∗
b

ln2 d
, (44)

where E∗
b is the electric Weber number in Ref. 23. Inspection of Fig. 4 reveals that for � > 0, Smin

evolves at a similar pace at early stage for t < 50, after when the evolutions become different and
further retardation of breakup is observed for small �. This is because convection of surface charge
creates shear flow that opposes the fluid flow and more details are explained later. For the rest of
current study, we consider the case when pinching does occur (either d is sufficiently large or Eb is
sufficiently small physically). The discussion about the touchdown solution that is similar to those
in Wang and Papageorgiou23 will be carried out separately.

B. Pinching solution and satellite formation

The evolution of the surface position S, axial velocity w, and surface charge density q for a
typical case with Q = 5, � = 100, Eb = 0.32, ka = 0.5, and δ = 0.1, is shown in Fig. 5. Similar to the
uncharged case, the modified capillary pressure (38) rises in the thinning region (z/L = 0.5), which
pushes fluid toward the end of thread (z/L = 0). The evolutions of S and w to breakup are in panel
(a) and (c), respectively, with the latter confirms the direction of the flow. In panel (b), evolution
of the perturbation in solid line is compared against linear theory in dotted line, which shows good
agreement even for δ = 0.1 here. Nonlinear effect enters at dimensionless time t ≈ 40, after when
surface charge tends to accumulate on the shallow cone, which is seen in panel (d). In addition, the
magnitude of q becomes relatively small in the necking region, which may lead to the guess that
local pinching dynamics remains the same as in Ref. 23. This yet remains question at present and
we show numerical investigation on local dynamics at the end of this section. In the last two panels
of Fig. 5, the electrostatic contribution to the normal and tangential force is investigated, where we
define

f e
n = Eb

2

(
φ2

2n − Qφ2
1n − (1 − Q) φ2

1t

)
, f e

t = −Ebqφ1t . (45)

From panel (e) it is seen that similar to charge distribution, f e
n is small in the necking region but large

on the conical shallow cone region nearby (satellite drop region). Tangential electric force in panel
(f) is seen to be only concentrated in the region 0.2 < z/L < 0.4 and vanishingly small elsewhere,
which implies the charge convection is only important as the necking region is forming in this case
� = 100. But it still alters local flow field, hence to affect the thinning process and drop formation.
As � decreases, charge convection is expected to play an important role in satellite drop formation,
which is explored next by focusing on the electrical parameters Q, �, Eb. We begin the discussion
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FIG. 5. Results on the evolution of thread profile, growth rate, axial velocity, and tangential electric force in half period. Eb
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by showing Fig. 6, a “phase diagram” in (�, Q) space that illustrates the effect of Q, � on drop
formation before pinching occurs, with the rest parameters fixed, d = 5, Eb = 0.32, and λ = 1. First
of all, it is notable that the cases represented by the parameters in the last row (� = 100) show
little difference on the satellite formation near breakup as expected as the permittivity ratio varies,
because in these cases relatively large conductivity of core fluid forces surface charges to redistribute
quickly, which is close to the perfect conductor case (� = ∞) in Ref. 23. In the panel of last row
and last column, the interface shape of a uncharged thread is also plotted in dashed line, from where
a larger satellite drop is observable when the thread is charged. As seen in perfect conductor case,23

a local reduction in pressure is expected in the shallow cone region which leads to the formation of
a larger satellite drop compared to the uncharged case, since more fluids are allowed to enter the
satellite structure. Similar results are obtained here for � = 100 where tangential electric force is
relatively small along most portion of surface.

As � decreases, results become subtle. The case of � = 10 is explored in the third row of Fig. 6,
where no significant change is seen in the satellite formation. However, close inspection of them
reveals that another thin neck tends to be formed between the thin thread and the small drop, at z/L
≈ 0.41 for Q = 10. More satellite drops are likely to form after first pinchoff for large Q. We further
investigate this by showing the evolution of Smin and the profiles of normal and tangential part of
electrostatic force close to breakup in Fig. 7. The panel (a) of Fig. 7 shows the evolution of Smin

which implies the thinning process is retarded further when � = 10 is fixed for large Q. This effect
is not obvious when � = 100, which may be due to the difference on the polarization force. Satellite
formation is shown in panel (b) for various Q, from where it is seen that pinching point is shifted
further to left of z/L = 0.2 for relatively large Q. This is because near breakup, larger normal electric
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interfacial perturbation.

force f e
n is observed (see panel (c)) for larger Q, which reduces local pressure further to allow more

fluid in satellite structure and retard thinning process. Notice that f e
n does not show a clear minimum

which is quite different from that in panel (e) in Fig. 5 where � = 100. Instead it tends to be large
in the satellite region rather quickly. In addition, the dotted curve (Q = 10) clearly shows two peaks
in normal force which corresponds to two thinning neck as we see in the panel in second row and
third column. A second peak also tends to form in the Q = 5 case, whereas there is only one peak
for Q = 2. The tangential electric force is included in panel (d) near pinching. The magnitude of
tangential force is seen to be smaller for larger Q, where the dotted line show a positive peak around
z/L ≈ 0.2 and a negative peak around z/L ≈ 0.4 as breakup is approached. This corresponds to our
case � = 10, Q = 10 and is consistent with result observed in panel (c). As a result, the tangential
electrostatic force provides pulling forces in opposite directions at z/L ≈ 0.2 and z/L ≈ 0.4, which
supplies as additional forces to drive the pinching and is responsible for potential breakup around z/L
≈ 0.4 after the first breakup, hence multiple satellite drop formation, which unfortunately cannot be
traced by using current simulations. For fixed � = 10, the trend to multiple satellite drop formation
is obvious when we increase the electric Weber number Eb (not shown).

More complicated situation occurs when � = 0.1, 1 as seen in the first and second row of
Fig. 6, respectively. The shape and number of satellite drops are highly dependent on the electrical
parameters one chooses. In addition, the retardation of breakup is not monotonic as Q increases as
seen in panel (a) of Fig. 8 when � = 1 fixed. (The case of � = 0.1 is not shown, which also gives
non-monotonic breakup times.) The � = 1 and Q = 10 case show a larger decreasing in Smin than
other two cases at early stage, 40 < t < 80, but with a slower decreasing rate after t ≈ 90 compared
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with Q = 2, 5. But finally the case Q = 5 breaks up slower than the other two, at t ≈ 134.7, in which
case a bulge that connected to large or small drop can be observed (dashed line in panel (b) in Fig. 8).
This bulge formation is also clear in the case of Q = 10, in which case one possible scenario involves
pinching accompanied by the formation of satellites between the bulges and the retraction of bulges
into the large drops afterwards. For the small satellite drops between the main drops, they are seen to
tend to form more spherical shapes than a conical wedge in large conduction case. One explanation
is that due to moderate and small conduction, surface charges relax slowly and tend to minimize
the surface area locally to maintain a low energy level. The electrostatic force is also investigated as
shown in panel (c) in Fig. 8, where at time close to breakup, one can see the complicated profiles
of the normal component of electric force, which implies that multiple thin necks that possibly lead
to multiple locations of breakup afterwards. The tangential electric force from panel (d) of Fig. 8
provides further evidence on the opposite directional stretching that is responsible for potential small
drops formation after the first breakup.

In Fig. 9, we further compare the effect of electric tangential force due to moderate and low
conduction on thread deformation at early stage. The surface shape S(z, t), surface charge density
q(z, t), electric tangential force f e

t (z, t), and axial velocity w(z, t) for � = 1 Q = 5 are shown in
upper two panels at t = 66.29 and t = 94.69. The same physical quantities are plotted in lower
panels for � = 10 when the thread has almost the same Smax/Smin as the previous one. When �

= 1, we see that at t = 66.29 (panel (a)) surface charge density has a minimum in magnitude at z/L
≈ 0.25 with larger q at smaller thread radius. When � = 10, thread evolves to a similar location
at an earlier time, t = 47.35 and surface charge density has a similar spatial distribution but with
a relatively flat profile for z/L < 0.25. At a later time, t = 75.76 for � = 10, q continues evolving
with S and becomes much larger along region z/L > 0.3 in panel (d) than (b) at t = 94.69 for �

= 1. Meanwhile, tangential force f e
t is smaller when � = 10 in panel (c) and (d) compared to �

= 1 in panel (a) and (b). It seems that when conduction is strong, charges tend to accumulate at
regions with small thread radius quickly. Tangential electric force inhibits this trend when � small.
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FIG. 8. The effect of Q on the minimal interfacial radius Smin (a) and the satellite drop (b) as well as the electrostatic force
f e
n and f e

t , (c) and (d), respectively, prior to breakup for � = 1.

As a result, the thread experiences more electric shearing forces when conduction is weak and the
thread evolves more slowly (see the axial velocities in dotted lines). At later times, as seen in Fig. 6,
more satellite drops are expected to form for weak conduction, where electric shearing force plays
an important part. In the absence of electric field, the role of interfacial shear is already attributed
to the multiple small satellite formation.36 We argue that the electric shear stress serves in a similar
manner to promote the multiple drop formation.

C. Scaling analysis and long wave approximation

Without electric field, the scalings for the balance on pinching is introduced in Ref. 7. A simple
balance of viscous drag and capillary force gives S ∼ z ∼ τ , while axial velocity increases slowly as
w ∼ ln(τ ) where τ is the remaining time to breakup. The balance remains the same when the perfect
conductor limit is considered in Ref. 23 (confirmed numerically) where only normal stress balance
is modified by electric field. When the conductivity of the core thread is finite, the scalings may be
altered. We consider the ratio of electric force and capillary force at the minimum point of thread
interface, f e

n / fc = Eb/2
(
φ2

2n − Qφ2
1n − (1 − Q)φ2

t

)
/κ . Figure 10 shows f e

n / fc for various � and
Q as indicated in figure with Eb = 2 and d = 5 fixed. All data show the trend toward a finite value
instead of a vanishingly small one, which indicates the local dynamics may be changed in these cases
(see Ref. 21 for similar argument for an electrified jet with different viscosities). In fact, our results
show that for relatively large �, convergence to the Lister-Stone scalings7 is observed, though at a
much later time (closer to singularity) compared to the results in Ref. 23, because now double cone
structure is only formed locally. For relatively small �, the axial velocity still shows w ∼ ln(τ ) but
the coefficient is quite different, which implies different angles at breakup. No existing theory can
explain this universally to our best knowledge so far, or whether a universal theory exists is unclear.
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We also investigate the two phase flow breakup by deriving a long wave model (B10)–(B12)
under the assumption that the whole pipe is slender and core fluid is much viscous than the annular
one, λ = δ2λ0 with δ the slenderness parameter, so that we retain the viscous effect of annular region.
The Stokes version is given as following (the details of derivation can be found in Appendix B):

St + 1

2
Swz + wSz = 0, (46)

−3
(S2wz)z

S2
+

(
1

S
− δ2Szz − Eb

2
q2

)
z

+ 2λ0G(S, d)
w

S2
− 2Eb

q

S
φ1z = 0, (47)

qt + 1

2
qwz + wqz = −δ2�

(
φ1

1r − Szφ1z
)
, (48)
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FIG. 10. Balance of normal electrostatic force and capillary force as the breakup is approached for various Q and �.
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where 2λ0G(S, d)w/S2 in (47) is the contribution of annular viscous drag, Eb/2q2 is the radial
repulsion of surface charge and Ebq/Sφ1z is contribution from electric tangential force. Polarization
force due to permittivity gradient does not enter the leading order. Charge diffusion in (48) is also
neglected. We further notice that dimensionless conductivity � stays at higher order provided �

< δ−2, which is suitable for current case when considering poor conductor. This term is not included
in our calculations. Numerical simulation of (46)–(48) is carried out by using an efficient PDE solver
EPDCOL,37 which has been used to simulate slender jet problem successfully in Refs. 29 and 38.
The method used finite element collocation in space and Gear’s method in time. We typically take
4000 points over one period of domain. The accuracy is assured by comparing the numerical results
with the linear growth rate (not shown) when small perturbations are introduced in S and q initially.
For the results reported here, we take initial conditions as

S(z, t = 0) = 1 + 0.1 cos(2π z/L), q(z, t = 0) = 1, w(z, t = 0) = 0. (49)

The boundary conditions are

Sz(0, t) = Szzz(0, t) = 0, Sz(L , t) = Szzz(L , t) = 0, (50)

w(0, t) = w(L , t) = 0, (51)

qz(0, t) = 0, qz(L , t) = 0. (52)

The tube radius is fixed as d = 5 and λ0 = 1. Following Ref. 3, δ2Szz is retained with δ = 0.01.
Simulation with other δ (e.g., δ = 0.1 ) gives visually the same growth rate and interfacial shapes for
the d used here. Numerical results are shown in Fig. 11, where panel (a) show the interface shape
together with satellite formation near pinchoff (Smin < 0.001). It is seen that as Eb increases, the
satellite structure tends to get small. This is qualitatively in agreement with our full simulation, in
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FIG. 11. The effect of Eb on the surface shape and satellite drop formations is shown in panel (a). Panel (b) shows the
evolution of minimum thread radius for different Eb showing the retardation of breakup for charged threads. Panel (c) shows
nonlinear simulations agree with the scalings near breakup. The imposed solid line on top indicates the evolution of 1/Sw2,
which grows in parallel with max |Szz| as expected from (55).
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the two panels in first column in Fig. 6, where small drop structures do appear when � becomes
small. On the other hand, this is quite different from the case when conduction is large, where larger
satellite drop is expected at larger Eb.23 The retardation of electric field is shown in panel (b) which
agrees with our previous results from full axisymmetric simulation. Now with this reduced model,
we can carry out the simulation close to breakup point to investigate the possible scalings, which is
summarized in panel (c) in Fig. 11 and will be discussed after we derive the scalings. In computation,
adaptive grid is used when the minimum thread radius is small. In particular we set the local grid
size inversely proportional to the maximum of Szz. It turns out that the long wave model in fact leads
to new scalings even in the uncharged problem compared to the ones in Ref. 7. By simple balance
in (47), we find

wzz ∼ (
S−1

)
z ∼ G(S, d)

w

S2
, (53)

which, together with w ∼ z/τ , leads to

S(z, t) ∼ τ, z ∼ τ (ln(1/τ ))1/2 , w ∼ (ln(1/τ ))1/2 , (54)

hence

Szz ∼ 1

τ ln(1/τ )
∼ 1

Sw2
. (55)

Indeed the inertia is negligible in this case since wt ∼ τ−1 (ln(1/τ ))1/2, which is asymptotically much
smaller than other terms in axial momentum equation. The electric force is also not contributing on
the pinchoff by using (54). As a result, axial length scale is different from λ = 1 (uncharged and
perfect conductor) case with square root of a logarithmic term, which indicates a weak dependence
on initial condition and slow convergence to final scalings.39 In panel (c) of Fig. 11, nonlinear
computations for various Eb confirm our prediction (55), where the maximum Szz grows as S → 0
and the imposed solid line above is the evolution of 1/Sw2. Whether the scalings can be identified
from full axisymmetric simulations or not (λ should be extended to larger range as well) is a future
task, which requires a highly adaptive grid due to the complex structure of satellites. Finally, we
note that even though the scalings are confirmed by simulation, the local shapes of S and w do not
collapse to single curves. Thus self-similarity solutions may not exist. In fact, if we set S = τH,
w = ln(1/τ )1/2V with z = τ ln (1/τ )1/2ξ , at leading order we formally get a set of ODE for H and V
which are the same as the ones derived in Ref. 7, where they argued nonexistence of self-similarity
solutions. The boundary conditions for H, V are different from theirs though,

H ∼ ξ (ln ξ )1/2, V ∼ (ln ξ )−1/2, as ξ → ±∞. (56)

Details of study of this lies beyond the scope of current study and hence are also left as future
investigations.

VI. CONCLUSIONS

We have investigated the stability of an axisymmetric charged viscous thread immersed in
another viscous fluid confined to a cylindrical tube through a leaky-dielectric model. Linear stability
analysis has been carried out, which show weak dependence of growth rate on electric parameters Q
and � when the two fluids are comparably viscous. However, direct numerical simulation based on
boundary integral method shows that the drop formation and rupture time are affected significantly
for moderate or low �/Q in nonlinear regime, where electric tangential force plays an important
role to provide additional shear stress to affect the nonlinear evolution. Based on the numerical
results, multiple satellite drops tend to be formed when � < 10 for fixed electrification level. On
the pinchoff, the local dynamics may be different from the perfect conductor case, for which an
attempt to search explanation is made by deriving and simulating a long wave model. New scalings
are predicted and confirmed by nonlinear simulations. But whether these scalings can be obtained
from direct simulation on the full problem is still unclear.
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APPENDIX A: MATRIX COMPONENTS FOR THE LINEAR PROBLEM

In this appendix, we document the elements of 6 × 6 matrix A = (
ai j

)
, defined in Eq. (29) as

following:

a11 = I1(k), a12 = I0(k), a13 = −I1(k),

a14 = −I0(k), a15 = −K1(k), a16 = −K0(k),

a21 = k I0(k), a22 = 2I0(k) + k I1(k),

a23 = −k I0(k), a24 = −2I0(k) − k I1(k),

a25 = kK (k), a26 = −2K0(k) + kK1(k),

a31 = a32 = a41 = a42 = 0,

a33 = I1(kd), a34 = d I0(kd),

a35 = K1(kd), a36 = d K0(kd),

a43 = k I0(kd), a44 = 2I0(kd) + kd I1(kd),

a45 = −kK0(kd), a46 = 2K0(kd) − kd K1(kd),

a51 = 2k I1(k) − Eb I0(k)
k I1(k)F + k I0(k)G

ω (I0(k)F − Q I1(k)G) − � I1(k)G
,

a52 = 2(I1(k) + k I0(k)) − Eb I0(k)
k I0(k)F + (k I1(k) + 2I0(k))G

ω (I0(k)F − Q I1(k)G) − � I1(k)G
,

a53 = −2λk I1(k), a54 = −2λ(I1(k) + k I0(k)),

a55 = −2λkK1(k), a56 = −2λ(kK0(k) − K1(k)),

a61 = 2k(k I0(k) − I1(k)) − k I1(k)

ω

(
1 − k2 − Eb

(
1 − F

I1(k)

(k I 2
0 (k) + Qk I 2

1 (k))ω + �k I 2
1 (k)

ω (I0(k)F − Q I1(k)G) − � I1(k)G

))
,

a62 = 2k I1(k)k − k I0(k)

ω

(
1 − k2 − Eb

(
1 − F

(2I0(k) + k I1(k) + Qk I1(k))ω + �k I1(k)

ω (I0(k)F − Q I1(k)G) − � I1(k)G

))
,

a63 = −2λk(k I0(k) − I1(k)), a64 = −2λk2 I1(k),

a65 = 2λk(kK0(k) + K1(k)), a66 = 2λkK1(k)k.

The perfect conductor limit is recovered as � → ∞ as expected. Then the contributions from
tangential field in a51 and a52 vanish and the part inside bracket of last term in a61 and a62 reduces to

1 − k2 − Eb

(
1 − k

F

G

)
, (A1)

which recovers the results in Ref. 23 by letting Eb = E∗
b/ ln2 d, where E∗

b is the electric Weber
number used in Ref. 23.
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APPENDIX B: DERIVATION OF ONE DIMENSIONAL MODEL

In this section, we briefly document the asymptotic analysis that leads to the one dimensional
equations. We assume the axial length scale is much larger than the radial one with slenderness
parameter δ = a/l � 1. Following Refs. 29 and 40, we introduce the expansion for electric potentials,
φi ∼ φo

i + δ2φ1
i + · · · with similar expressions for the other physical quantities.

The electric potentials satisfy the Laplace equation (1) and to leading order we have

φ0
irr + 1

r
φ0

ir = 0, i = 1, 2. (B1)

Using boundary conditions (14) at r = S0(z, t), which in leading order of long wave limit are φ0
1 = φ0

2
and Qφ0

1r − φ0
2r = q0, together with regularity condition φ0

1r (r = 0) > 0 and φ0
2(r = d) = 0, yield

the solutions for electric potentials

φ0
1 = −S0q0 ln(S0/d), φ0

2 = −S0q0 ln(r/d). (B2)

The equation for surface density on r = S0 now becomes (by considering R = 0 first)

q0
t + w0

1q0
z + w0

1q0
z + q0u0

1

S0
= −δ2�

(
φ1

1r + S0
z φ

0
1z

)
, (B3)

where � enters the leading order if � ∼ δ−2 and φ1
1r is obtained by solving the equation in higher

order φ1
1rr + φ1

1r/r + φ0
1zz = 0. From now on, we drop the superscript 0 but retain 1 to emphasize

the high order term.
In the fluid region, we consider the Navier-Stokes equations. In order to take both core and

annular fluids into account, we take the annular fluid to be less viscous, λ = δ2λ0. We further ignore
the inertial effect in annular region, which amounts to assume Re2 < O(δ2). The axial momentum
equation then gives

p2r = 0, p2z = λ0

r
(rw2r ) , (B4)

whose solutions are readily to be obtained, by using continuity equation

w2 = 1

λ0

(
r2

4
p2z + A ln(r ) + B

)
, (B5)

u2 = − 1

λ0

(
r3

16
p2zz − r

4
Az + r ln(r )

2
Az + r

2
Bz

)
+ C

r
, (B6)

where A, B, and C are functions of z and t. In the core, w1 = w1(z, t) in the leading order, which
is independent of radial coordinate. Using continuity equation, u1 = −rw1z/2 as in the standard
single fluid jet problem.3, 40

On the interface, the tangential and normal stress balances in leading order, read as

u1z + w1
1r + 2Sz(u1r − w1z) − λ0w2r = −Ebqφ1z, (B7)

p1 − p2 + w1z = 1

S
− δ2Szz − Eb

2
q2, (B8)

where in normal stress balance, δ2Szz is retained as in Ref. 3 and we notice that Q can only enter the
system at next order O(δ2). The higher order w1

1r is obtained from axial momentum equation,

w1
1r = r

2

(
R̄e(w0t + w0w0z) − w0zz + κz − Ebqqz

)
, (B9)

where Re1 = δ2 R̄e.
Therefore, with no-slip and no-penetration boundary conditions at wall, w2(r = d) = u2

(r = d) = 0 and continuous velocity condition along r = S, w1 = w2 and u1 = u2, and the stress
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balances above, after some algebra we arrive at the evolution equations for S, w, and q, namely,
Eqs. (B10)–(B12):

St + 1

2
Swz + wSz = 0, (B10)

R̄e (wt + wwz) = 3
(S2wz)z

S2
−

(
1

S
− δ2Szz − Eb

2
q2

)
z

− 2λ0G(S, d)
w

S2
− 2Eb

q

S
φ1z, (B11)

qt + 1

2
qwz + wqz = −δ2�

(
φ1

1r − Szφ1z
)
, (B12)

where φ1
1r = r/2 (Sq ln(S/d))zz , φ1z = −(Sqln (S/d))z and

G(S, d) = S2 + d2

S2 − d2 − (S2 + d2) ln(S/d)
. (B13)

Notice that in the uncharged flow case with R̄e = 0, considering d → ∞ and rescaling
λ0 = ln (d)λ1, or λ = δ2ln (d)λ1, we obtain formally the equation in Ref. 7,

St + 1

2
Swz + wSz = 0, (B14)

2λ1w − 3(S2wz)z + S2
(

1
S − δ2Szz

) = 0. (B15)
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