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Long-wave equations and direct simulations for the breakup of a viscous fluid
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We consider capillary driven breakup of a viscous liquid thread in a second immiscible viscous liquid
of infinite extent and arbitrary viscosity. Postulating the existence of long-wave dynamics, we use the
slenderness parameter ε� 1 (proportional to the interfacial slope, for example) to construct consistent
asymptotic theories using matched asymptotic expansions at arbitrary viscosity ratios. Three canonical
models are found, two of which hold for asymptotically small values of the inner to outer viscosity ratio
λ∼ ε2 and λ∼ 1/ ln(1/ε), respectively, and the third valid for large λ∼ 1/(ε2 ln(1/ε)). The smallest and
largest λ produce appropriate limits of models described in the literature when the inner or outer fluid
is air, respectively. The intermediate λ model is found to be ill-posed and a technique is described to
regularize it by considering terms arising from the asymptotic forms of the λ∼ ε2 model as its scaled
viscosity ratio becomes large, and from the asymptotic forms of the λ∼ 1/(ε2 ln(1/ε)) as its scaled vis-
cosity becomes small. Time-dependent direct numerical simulations based on boundary integral methods
are also used to predict the dynamics for a large range of viscosity ratios (0.001 � λ� 20). Intermediate
values of λ indicate that the dynamics is not long-wave, consistent with the asymptotic analysis, but are
self-similar in a pinch-off region with order one aspect ratio. Simulations at large and small values of λ
produce intricate dynamics near pinching and in particular the formation of necks, threads and bulges.
The direct simulations and the asymptotic models valid at λ∼ ε2 and λ∼ 1/(ε2 ln(1/ε)) complement
each other and the former confirm the validity of the long-wave assumptions.
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1. Introduction

Liquid threads are encountered in numerous technological and industrial applications including ink-
jet printing, extrusion processes and emulsification, spraying, electrospinning, to mention a few.
The underlying phenomena are driven by capillary or Rayleigh instability—Rayleigh (1892)—that pre-
dicts that all waves longer than the undisturbed thread circumference are linearly unstable. Physically,
a cylindrical liquid thread that supports surface tension tends to minimize its surface area by driving the
system to drop formation. Utilizing this mechanism to produce a controlled stream of drops underpins
established technologies such as ink-jet printing—for more recent microfluidics applications, see Anna
et al. (2003). On the other hand, electric fields along the jet axis are used to suppress capillary instabil-
ity as applied in electrospinning technologies. In addition to the temporal instability modes uncovered
by Rayleigh, a liquid jet is also susceptible to spatial instabilities; these are disturbances with a fixed
frequency of oscillation that can grow downstream as they travel, see Keller et al. (1973). As the Weber
number (equivalently the undisturbed jet speed) is reduced below a critical value the jet exhibits absolute
instability—two lower order poles in the dispersion relation merge to produce a pinch singularity—and
the jet grows in both space and time. Such phenomena also appear when a jet is surrounded by a sec-
ond fluid, as seen in the compound jet study of Chauhan et al. (2006). For an alternative analysis of
absolute-convective instability for certain evolution PDEs, see Fokas & Papageorgiou (2005).

The present study is concerned with the non-linear dynamics and ultimate topological jet-pinching
transitions that are seen in two-fluid jet systems, where a viscous liquid thread is surrounded by a second
immiscible viscous liquid (taken to be unbounded in the radial direction). A combination of computa-
tional techniques has been applied by various authors and we mention the boundary integral computa-
tions for Stokes flows by Newhouse & Pozrikidis (1992), Pozrikidis (1999), Lister & Stone (1998) and
Sierou & Lister (2003) along with Navier–Stokes computations by Chen et al. (2002), Hameed et al.
(2008b) and Doshi et al. (2003). It is evident from all these theoretical studies as well as experiments
(e.g. Cohen et al., 1999; Kowalewski, 1996) that the presence of a surrounding viscous fluid influences
significantly the analytical solutions found for single jets surrounded by a hydrodynamically passive
medium—see Eggers & Dupont (1994) and Papageorgiou (1995).

The emergence of long-wave dynamics depends critically on the viscosity ratio; it has been shown
that consistent long-wave models that can describe breakup can be found when the ratio of inner to outer
fluid viscosity λ, say, is asymptotically small or large (see Doshi et al., 2003; Lister & Stone, 1998,
respectively). We employ rational asymptotic expansions to derive three canonical underlying long-
wave models for λ∼ ε2 � 1, λ∼ 1/ ln(1/ε)� 1 and λ∼ 1/[ε2 ln(1/ε)] � 1, where ε� 1 denotes the
slenderness ratio—see Section 2 for the definition. The λ� 1 models are characterized by a Poiseuille-
like flow in the jet interior due to the viscous drag exerted by the surrounding fluid, whereas the latter
scaling having λ� 1 induces a plug flow to leading order in the jet interior. This latter case corre-
sponds to finite outer viscosity (albeit asymptotically small) modification of the equations studied by
Papageorgiou (1995) and these are recovered in the appropriate limit. The asymptotic analysis is based
on a combination of a long-wave lubrication approximation for the inner region fluid dynamics and
these are matched to the outer unbounded domain flow at the interface. The outer flow is represented
by an axially periodic distribution of singularities (Stokeslets and sources) placed on the jet axis; this
follows the original ideas of Handelsman & Keller (1967) and Geer & Keller (1968) for potential flows
and their extensions to Stokes flows by Buckmaster (1972) and Acrivos & Lo (1978). In addition to
deriving long-wave models, we carry out direct simulations based on boundary integral methods using
the techniques applied by Wang & Papageorgiou (2011) in a related problem. The computations follow
capillary pinching for λ in the range [0.001, 30]; for λ neither too small nor too large (e.g. between
0.03 and 10, for instance), the breakup dynamics follow a self-similar scenario which is not long-wave,
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in agreement with the findings of previous studies (e.g. Sierou & Lister, 2003). When λ is smaller or
larger and hence outside this regime, more intricate behaviour is found including sequences of necks,
threads and bulges in the vicinity of the pinch point. A full comparison between these simulations and
the asymptotic models developed here will be carried out elsewhere.

2. Long-wave models for the breakup of a fluid thread

2.1 Formulation

Consider an infinitely long cylindrical thread of viscous fluid with viscosity λμ surrounded by an
immiscible, unbounded fluid with viscosity μ, so that λ is the ratio of the interior to exterior viscos-
ity. We assume that inertia is sufficiently small for the evolution to be governed by the Stokes equations.
The unperturbed radius of the fluid thread is b and constant surface tension σ acts at the interface.

We are interested in deriving consistent evolution equations valid for axisymmetric long-wave evo-
lution of the thread that are capable of predicting pinching. See, for example, Papageorgiou (1995) for
a successful application of such an asymptotic theory when λ= ∞. To achieve this, we assume that
disturbances of the interface shape have a typical axial length scale of order l and the ratio b/l = ε� 1.
In a cylindrical polar coordinate system (r, θ , z), all lengths are non-dimensionalized by l, which leads
to independent variables r̃ = r/ε and z in the interior or thread region with r and z in the exterior
region. With this scaling, axial perturbations are of order O(1) and the interface is located at r = εR̃(z, t).
Looking ahead, the separation of scales in the thread allows a lubrication analysis there, but the flow in
the exterior region is governed by an elliptic problem whose solution is described later. Pressure is non-
dimensionalized by the capillary pressure σ/b in the interior or thread region and by σ/l in the exterior
region, while velocities, which are continuous across the interface that separates the two regions, are
non-dimensionalized by the capillary velocity σ/μ, and time is non-dimensionalized by μb/σ . Depen-
dent variables in the thread region are denoted by lower case letters and the corresponding quantities in
the exterior region are denoted by upper case letters.

The governing equations are as follows:
In the interior or thread region, 0< r̃< R̃(z, t)

λ

(
∇2

r̃ − 1

r̃2
+ ε2 ∂

2

∂z2

)
ur = ∂p

∂ r̃
,

λ

ε

(
∇2

r̃ + ε2 ∂
2

∂z2

)
uz = ∂p

∂z
, (2.1a)

1

r̃

∂

∂ r̃
(r̃ur)+ ε

∂uz

∂z
= 0. (2.1b)

In the exterior region, r> εR̃(z, t)

(
∇2

r − 1

r2
+ ∂2

∂z2

)
Ur = ∂P

∂r
,

(
∇2

r + ∂2

∂z2

)
Uz = ∂P

∂z
, (2.2a)

1

r

∂

∂r
(rUr)+ ∂Uz

∂z
+ = 0. (2.2b)

Here, ∇2
r = (1/r)(∂/∂r)(r(∂/∂r)) and a similar expression for ∇2

r̃ represent the radial derivatives of the
Laplacian.
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The boundary conditions on the thread axis are

ur(0, z, t)= ∂uz

∂ r̃
(0, z, t)= 0, (2.3)

and in the exterior region
Ur, Uz → 0 as r → ∞. (2.4)

At the interface r = εR̃(z, t), the conditions to be satisfied are continuity of velocity, the kinematic con-
dition and continuity of stress. The length scale for non-dimensionalization of these is l, and below we
use primes to denote ∂/∂z:

Continuity of velocity
ur = Ur, uz = Uz. (2.5)

The kinematic condition
R̃t − ur + εuzR̃

′ = 0. (2.6)

Tangential stress balance

λ

{
R̃′ ∂ur

∂ r̃
+ 1

2
(1 − ε2R̃′2)

(
∂ur

∂z
+ 1

ε

∂uz

∂ r̃

)
− εR̃′ ∂uz

∂z

}

=
{
εR̃′ ∂Ur

∂r
+ 1

2
(1 − ε2R̃′2)

(
∂Ur

∂z
+ ∂Uz

∂r

)
− εR̃′ ∂Uz

∂z

}
. (2.7)

Normal stress balance

p − 2ελ

(1 + ε2R̃′2)

{
1

ε

∂ur

∂ r̃
− εR̃′

(
∂ur

∂z
+ 1

ε

∂uz

∂ r̃

)
+ ε2R̃′2 ∂uz

∂z

}

− εP + 2ε

(1 + ε2R̃′2)

{
∂Ur

∂r
− εR̃′

(
∂Ur

∂z
+ ∂Uz

∂r

)
+ ε2R̃′2 ∂Uz

∂z

}

= 1

R̃(1 + ε2R̃′2)1/2

{
1 − ε2R̃R̃′′

(1 + ε2R̃′2)

}
. (2.8)

Here, all quantities are evaluated on the interface, so that with our choice of radial coordinates, depen-
dent variables and their derivatives in the interior or thread region (denoted in lower case) are eval-
uated on r̃ = R̃(z, t), while analogous quantities in the exterior region (upper case) are evaluated on
r = εR̃(z, t).

Our interest is to construct asymptotic long-wave models in the limit in which the fluid of the interior
region is a small aspect ratio ‘thread’, that is, as ε→ 0 with the interface slope R̃′(z, t) of order O(1).

2.2 The solution in the exterior or surrounding fluid

The assumption of small aspect ratio implies that flow quantities in the exterior fluid can be expressed
in terms of a distribution of point forces or Stokeslets f (z, t), that act in the axial direction, and a dis-
tribution of point mass sources g(z, t), where both distributions are located on the thread axis r = 0.
The evaluation of flow quantities on the interface is given in the classical results of slender body theory
for Stokes flow, of which two early examples are Buckmaster (1972) and Acrivos & Lo (1978). The
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expressions that result and more details of their derivation are given in, for example, Hameed et al.
(2008a).

To summarize, in terms of f and g the flow quantities and their derivatives in the exterior fluid,
evaluated at the interface r = εR̃(z, t), are given by

Ur = −2ε ln(1/ε)f ′R̃ + 2g

εR̃
+ · · · , Uz = 4 ln(1/ε)f − 2 ln(1/ε)g′ + · · · , (2.9a)

P = −4 ln(1/ε)f ′ + · · · ,
∂Ur

∂r
= −2 ln(1/ε)f ′ − 2g

ε2R̃2
+ · · · , (2.9b)

∂Ur

∂z
+ ∂Uz

∂r
= − 4f

εR̃
+ 4g′

εR̃
+ · · · ,

∂Uz

∂z
= 4 ln(1/ε)f ′ − 2 ln(1/ε)g′′ + · · · . (2.9c)

Here and below, an ellipsis denotes terms that are of higher order. The distributions f and g that appear
in these expressions have not yet been scaled with respect to ε. Scalings are sought below, by looking
for distinguished limits that relate the viscosity ratio λ to ε in different regimes as ε→ 0, and which
result from satisfying the interfacial boundary conditions (2.5–2.8).

2.3 The solution in the interior fluid

A crucial observation that allows a rational determination of the different scaling relations between λ
and ε is that the flow induced in the interior fluid has a velocity profile that is either of Poiseuille- or
plug-flow type.

To see that these are the only two allowable forms of velocity profile within the thread, we introduce
a stream function ψ , where ur = (−ε/r̃)(∂ψ/∂z) and uz = (1/r̃)(∂ψ/∂ r̃). Eliminating the pressure p
between (2.1a), we find that ψ satisfies{

r̃
∂

∂ r̃
∇2

r̃

(
1

r̃

∂

∂ r̃

)
+ ε2 ∂

2

∂z2

(
r̃
∂

∂ r̃

(
1

r̃

∂

∂ r̃

)
+ r̃

(
∇2

r̃ − 1

r̃2

)
1

r̃

)
+ ε4 ∂

4

∂z4

}
ψ = 0. (2.10)

So that, to leading order, from the boundary conditions (2.3) the stream function is given by

ψ0 = A0(z, t)
r̃4

16
+ B0(z, t)

r̃2

2
. (2.11)

Using the stream function (2.11) to reconstruct the velocity and pressure, and then rescaling so that
the pressure p inside the thread is O(1), when A0 = ∂p0/∂z |= 0 we find a Poiseuille-type velocity profile

p = p0(z, t)+ · · · , uz = ε

λ

(
∂p0

∂z

r̃2

4
+ B0(z, t)

)
+ · · · ,

ur = −ε2

λ

(
∂2p0

∂z2

r̃3

16
+ ∂B0

∂z
(z, t)

r̃

2

)
+ · · · .

(2.12)

However, when A0 = 0 we find a plug-type velocity profile

p = p0(z, t)+ · · · , uz = 1

ελ
B0(z, t)+ · · · , ur = −1

λ

∂B0

∂z
(z, t)

r̃

2
+ · · · . (2.13)

To estimate the order of magnitude of the component of the velocity gradient ∂uz/∂ r̃ for plug flow, we
return to the axial component of the momentum equation (2.1a) to find that radial dependence of uz
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occurs at an order ε2 smaller than leading order, and that

uz = 1

ελ
B0(z, t)+ · · · + ε

λ

((
∂p0

∂z
− ∂2B0

∂z2

)
r̃2

4
+ B1(z, t)

)
+ · · · . (2.14)

2.3.1 Poiseuille flow in the interior fluid We perform order of magnitude estimates on the interfacial
boundary conditions when the flow in the thread is of Poiseuille type, per (2.12). We then look for
scalings of λ, f and g with respect to ε that provide a leading-order balance between a maximal number
of terms in each of the interfacial boundary conditions.

Continuity of radial velocity at the interface per (2.5), with (2.9a) and (2.12), gives

−ε2

λ

(
∂2p0

∂z2

R̃3

16
+ ∂B0

∂z

R̃

2

)
= −2ε ln(1/ε)f ′R̃ + 2g

εR̃
. (2.15)

On multiplying through by λ/ε2, we have a potential balance between terms of orders O(1),
O((λ ln(1/ε)/ε)f ′) and O((λ/ε3)g). Continuity of axial velocity at the interface, per (2.5) with (2.9a)
and (2.12), gives

ε

λ

(
∂p0

∂z

R̃2

4
+ B0

)
= 4 ln(1/ε)f . (2.16)

Here, the term in g′ of (2.9a) has been neglected since its magnitude relative to the term in f is nec-
essarily smaller than that given by a leading-order balance in (2.15). On multiplying through by λ/ε,
(2.16) gives a potential balance between terms of order O(1) and O((λ ln(1/ε)/ε)f ), so that no further
information for the scalings, relative to that already given by (2.15), is found.

Of the conditions to be satisfied at the interface, the kinematic condition (2.6) is the only one that
contains a time derivative, and it may be necessary to introduce a new time scale τ = δt in order to retain
a time derivative in the evolution equation that is sought for the interface position R̃. From the continuity
of velocity at the interface, the velocity components can be expressed in terms of the Stokeslet and mass
source distributions f and g, respectively, so that (2.6) with (2.9a) gives

δR̃τ = ε ln(1/ε)
(−2f ′R̃ − 4f R̃′)+ 2g

εR̃
. (2.17)

As in (2.16), the term in g′ that appears in the axial velocity of (2.9a) has been omitted here since it is
of higher order. The terms in (2.17) are of order O(δ), O(ε ln(1/ε)f ) and O(g/ε), and we note that the
ratio of the magnitude of the terms containing f and g is the same as that found in (2.15), so that for the
scalings sought, only information about δ is provided by a balance of terms in (2.17).

In the tangential stress balance condition at the interface (2.7), when the interior flow is of Poiseuille
type from (2.12) the one component ∂uz/∂ r̃ of the velocity gradient provides a contribution that is of
greater magnitude than all others to the tangential stress in the interior fluid. With (2.9b) and (2.9c), the
tangential stress balance gives a potential leading-order balance among terms of the equation

∂p0

∂z

R̃

4
= − 2f

εR̃
− 2gR̃′

εR̃2
+ 2g′

εR̃
. (2.18)

These are of magnitudes O(1), O(f /ε) and O(g/ε).
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In the normal stress balance condition (2.8), contributions to the viscous stress due to the interior
fluid are estimated from (2.12) and found to be at most of order O(ε2), and are therefore neglected
relative to the interior pressure and surface tension, which are O(1). Contributions to the normal stress
due to the exterior fluid are estimated from (2.9b) and (2.9c). The term of greatest magnitude that
contains f is of order O(ε ln(1/ε)f ′), which by comparison with (2.18) is necessarily of higher-order
relative to the interior pressure and surface tension. The Stokeslet distribution f therefore does not
appear in the leading-order normal stress balance, which becomes

p0 − 4g

εR̃2
= 1

R̃
. (2.19)

These are of magnitude O(1) and O(g/ε), which are in the same ratio as found in the tangential stress
balance relation (2.18), so that no further information for the scaling of g is found.

To find scalings that balance a maximal number of terms, we therefore have the information provided
by continuity of radial velocity at (2.15) and the tangential stress balance at (2.18) alone. Continuity of
radial velocity implies a possible balance of terms among

1, λ
ln(1/ε)

ε
f ′ and λ

g

ε3
, (2.20)

and the tangential stress balance implies a possible balance among

1,
f

ε
and

g

ε
. (2.21)

The kinematic condition then gives the magnitude of the time scale δ, from a balance of terms among

δ, ε ln(1/ε)f and
g

ε
. (2.22)

We note that the ratio of terms containing f and g is the same in both (2.20) and (2.22).
By inspection, not all terms of (2.20) and (2.21) can enter a balance, and there are two consistent

choices or canonical regimes for λ as follows:

1. f ∼ ε and g ∼ ε to balance all terms in (2.21); then λ∼ ε2 for a consistent balance in (2.20). In
this case, (2.16) implies that the axial velocity uz(R̃, z, t)= 0 on the interface and (2.22) implies
that δ = 1;

2. g ∼ ε2 ln(1/ε)f ′ and λ∼ ε3/g to balance all terms in (2.20); then f ∼ ε for a consistent balance
in (2.21). This gives g ∼ ε3 ln(1/ε) and λ∼ 1/ ln(1/ε), with δ ∼ ε2 ln(1/ε).

The scaling λ∼ ε2 at 1 has been considered by Doshi et al. (2003) and Sierou & Lister (2003). For
completeness, we include some details of the derivation of the long-wave model for this scaling regime
in the Appendix, but the result is needed in the discussion below. Putting λ= ε2λ0, where λ0 = O(1),
dropping the zero-subscript on p0 and writing R for R̃ (with some overuse of notation), we have

∂R

∂τ
= 1

16λ0

1

R

∂

∂z

(
R4 ∂p

∂z

)
, (2.23)

p = 1

R
+ 2

R

∂R

∂τ
. (2.24)
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Together with initial and boundary conditions this forms a closed system for the determination of R
and p.

We proceed with the scaling at 2 above, and write

λ= λ1

ln(1/ε)
, f = εf0 + · · · , g = ε3 ln(1/ε)g0 + · · · , δ = ε2 ln(1/ε), (2.25a)

uz = ε ln(1/ε)uz0 + · · · , ur = ε2 ln(1/ε)ur0 + · · · , p = p0 + · · · , R̃ = R0 + · · · . (2.25b)

This scaling retains all terms among (2.20), and hence all leading terms among (2.15–2.17), which
become

1

λ1

(
∂2p0

∂z2

R3
0

16
+ ∂B0

∂z

R0

2

)
= 20f ′

0R0 − 2g0

R0
, ur continuous, (2.26)

1

λ1

(
∂p0

∂z

R2
0

4
+ B0

)
= 4f0, uz continuous, (2.27)

∂τR0 = −2f ′
0R0 − 4f0R′

0 + 2g0

R0
, kinematic condition. (2.28)

In the stress-balance boundary condition, the mass source distribution g does not contribute at leading
order in this scaling regime, and after a little rearrangement we have

f0 = −R2
0

8

∂p0

∂z
, tangential stress balance, (2.29)

p0 = 1

R0
, normal stress balance. (2.30)

Both B0 and f0 can be eliminated between (2.26) and (2.27) to give an expression for the mass source
strength g0, while (2.28) gives f0 directly. Both expressions are in terms of R0 and p0. Then, from (2.28)
and (2.30), after dropping zero-subscripts, we find the pair of long-wave evolution equations

∂R

∂τ
=
(

1

4
+ 1

16λ1

)
1

R

∂

∂z

(
R4 ∂p

∂z

)
, (2.31)

p = 1

R
. (2.32)

From (2.27) and (2.29), the term B0 that appears in the velocity profile (2.12) is given by B0 = −(1 +
2λ1)(R2p′/4).

2.3.2 Plug flow in the interior fluid. When the flow in the thread is of the plug-flow type, the velocity
profile is given by (2.13). Long-wave models for this case have been considered by Papageorgiou (1995)
for a Stokes flow thread and by Eggers & Dupont (1994) for a Navier–Stokes thread, with inviscid
surroundings adopted in both studies. Lister & Stone (1998) extended the long-wave model for a Stokes
flow thread to include viscous surroundings, by somewhat heuristic reasoning, and the result is given
here.
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There is only one significant scaling regime when the flow in the thread is of the plug-flow type, and
the scalings are

λ= λ2

ε2 ln(1/ε)
, f = εf0 + · · · , g = o(ε3 ln(1/ε)), δ = ε2 ln(1/ε), (2.33a)

uz = ε ln(1/ε)uz0 + · · · , ur = ε2 ln(1/ε)ur0 + · · · , p = p0 + · · · , R̃ = R0 + · · · . (2.33b)

The long-wave model is given by

∂R

∂τ
+ w

∂R

∂z
+ R

2

∂w

∂z
= 0, (2.34)

λ2
∂

∂z

(
3R2 ∂w

∂z

)
+ ∂R

∂z
= 2w, (2.35)

where the zero-subscript on R0 has been dropped and we have set uz0 = w.

3. Discussion of the long-wave models

The three long-wave models given above agree or match when the relevant limits of the viscosity ratio
are formed.

To see this, first consider the limit of the small viscosity regime model (2.23) and (2.24) as its
viscosity parameter λ0 → ∞. Since δ= 1 in this regime, per (A.1a), it has time τ = t. If this is rescaled
to a new time τ̄ = τ/λ0 and the limit λ0 → ∞ is taken, after eliminating p, one finds the single equation

∂R

∂τ̄
= 1

16R

∂

∂z

(
R4 ∂

∂z

(
1

R

))
, (3.1)

for R, where τ̄ is a slow time relative to τ = t. This is the same as the limit of the intermediate viscosity
regime model of (2.31) and (2.32) when its viscosity parameter λ1 → 0. To form this limit, the slow
time τ of (2.31) is rescaled to τ̄ = τ/λ1 and p is eliminated via (2.32). In this case, τ̄ is a fast time
relative to the time τ of (2.31) and (2.32).

Next, consider the limit of the intermediate viscosity regime model of (2.31) and (2.32) when its
viscosity parameter λ1 → ∞. Eliminating p between (2.31) and (2.32), we immediately find the equation

∂R

∂τ
= 1

4R

∂

∂z

(
R4 ∂

∂z

(
1

R

))
, (3.2)

which is also (3.1) with time rescaled. Equation (3.2) is the same as the limit of the large viscosity
regime model (2.34) and (2.35) as its viscosity parameter λ2 → 0, as is seen once w is eliminated and a
little manipulation of the z-derivatives is performed.

3.1 The leading-order intermediate viscosity regime model is ill-posed

It turns out that the intermediate viscosity regime model of (2.31) and (2.32) is ill-posed in the sense
that the growth rate of small-amplitude disturbances of a cylindrical thread grow without bound with
decreasing wavelength (on the other hand, note that the small and large λmodels are linearly well-posed
in the sense that disturbances do not have unbounded growth rates as the wavenumber tends to infinity).
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On setting R = 1 + ξ(z, t) in (2.31) and (2.32) and linearizing, we find the backward heat equation

ξτ = −1

4

(
1 + 1

4λ1

)
ξzz. (3.3)

It follows immediately that the large viscosity limit of the small viscosity model, given by (3.1), and
the small viscosity limit of the large viscosity model, given by (3.2), are also ill-posed, since both are
found when p is eliminated between (2.31) and (2.32) and time is rescaled.

3.2 Regularization

Both of the limiting evolution equations (3.1) and (3.2) hold at leading order. The inclusion of viscous
effects in either of the models (2.23–2.24) or (2.34–2.35) at the next order can render them well-posed
or, in other words, regularize them.

Consider the small viscosity model (2.23–2.24) first. To form a regularized model when λ0 � 1, it
is necessary to use (2.23) to express the time derivative ∂τR in (2.24) in terms of spatial derivatives, and
then to rescale to the new time τ̄ = τ/λ0 that was introduced in (3.1). Put p = R−1 + Q/λ0 + · · · to find
an expression in terms of spatial derivatives for Q. On substitution of this in the time-rescaled version
of (2.23), one finds

∂R

∂τ̄
= 1

16R

∂

∂z

(
R4 ∂

∂z

(
1

R

))
+ 1

128λ0R

∂

∂z

(
R4 ∂

∂z

(
1

R2

∂

∂z

(
R4 ∂

∂z

(
1

R

))))
. (3.4)

Small-amplitude, linearized disturbances given by R = 1 + ξ(z, t) satisfy

ξτ̄ = − 1

16
ξzz − 1

128λ0
ξzzzz. (3.5)

The fourth derivative term regularizes the model equation by damping the growth of short wavelength
disturbances. It has the same eigenvalues as the linearized Kuramoto–Sivashinsky equation; see, for
example, the review by Hyman & Nicolaenko (1986).

To regularize the large viscosity model (2.34–2.35) when λ2 � 1, put w = (∂zR/2)+ λ2Q̃ + · · · in
(2.35) to find that Q̃ = 3

4∂z(R2∂2
z R). Then, from (2.34) we have

∂R

∂τ
= 1

4R

∂

∂z

(
R4 ∂

∂z

(
1

R

))
− 3λ2

8R

∂

∂z

(
R2 ∂

∂z

(
R2 ∂

2R

∂z2

))
. (3.6)

Linearized small-amplitude disturbances ξ(z, t), where R = 1 + ξ(z, t), satisfy

ξτ = −1

4
ξzz − 3λ2

8
ξzzzz, (3.7)

and, as at (3.5), the fourth derivative term regularizes the model.
A means of regularizing the intermediate viscosity model is to include higher-order terms in ε

in the curvature or capillary stress term of the normal stress-balance boundary condition (2.8). In a
long-wave approximation, the leading-order effect of curvature is given by the component in the plane
z = constant, which is sometimes referred to as hoop stress. The component in the orthogonal plane
adds a higher-order z-derivative to the second of (2.31) and (2.32), to give p = 1/R − ε2∂2

z R. Linearized
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small-amplitude disturbances ξ(z, t), where R = 1 + ξ(z, t), then satisfy

ξτ = −1

4

(
1 + 1

4λ1

)(
ξzz + ε2ξzzzz

)
, (3.8)

which provides a high frequency cut-off or negative growth rate for disturbances with wavelength less
than O(ε).

4. Direct numerical simulations

In this section, we report on numerical simulations for the capillary breakup of a slender drop in Stokes
flow. The velocity on the drop interface is governed by the boundary integral equation (see Lister &
Stone, 1998 or Pozrikidis, 1999)

uα(x0)− λ− 1

4π(λ+ 1)

∫ PV

I
Qαβγ (x, x0)uβ(x)nγ (x) dl(x)

= − 1

4π(λ+ 1)

∫
I
κMαβ(x, x0)nβ(x) dl(x), (4.1)

where I is the interface profile, which has outward normal n and curvature κ . Here Qαβγ and Mαβ

are the axisymmetric version of the Stresslet distribution (or double layer potential) and the Stokeslet
distribution (or single layer potential), respectively. An adaptive grid technique, which is similar to
that described by Lister & Stone (1998), is used to resolve the necking region before pinch-off. In the
computations reported here, the initial interface profile was represented by about 200 points, which
was increased to around 450 at the time of the final profile. In addition to axisymmetry, the interface
is symmetric about the plane z = 0. The initial interface profile is sufficiently elongated that, near the
point where the drop pinches of,f the dynamics is expected to closely follow the dynamics of an axially
periodic thread.

Our interest is in the behaviour near pinch-off as the viscosity ratio λ varies. This has been consid-
ered theoretically by Zhang & Lister (1999) and Sierou & Lister (2003), and in experiments by Cohen
et al. (1999) and Kowalewski (1996). To compare with the majority of these studies, in this section the
thread radius is denoted by h instead of R, the axial fluid velocity is v and the radial velocity is u, instead
of uz and ur, respectively.

Lister & Stone (1998) use scaling arguments in the intermediate to large viscosity regime to reason
that both the minimum radius of a thread hmin and the axial scale near the pinch point zmin = z(hmin)

behave linearly in time as pinch-off is approached. They support this with the results of boundary
integral computations when λ= 1, and we show the results of our computations at the same viscosity
ratio in Fig. 1. Figure 1(a) shows the interface profile from the initial instant to a time τ = (ts − t) of
approximately 10−3 just before pinch-off, when the minimum thread radius is close to 10−4; here ts
denotes our numerical estimate of the pinch-off time. Figure 1(b) shows the axial velocity versus z at
the same sequence of times. Figure 1(c) shows the minimum thread radius hmin versus τ in a log–log
plot, which confirms the scaling relation hmin ∼ τ ; the dashed line has slope 1. Figure 1(d) shows the
axial velocity vhmin at the minimum thread radius versus the logarithm of the minimum thread radius
ln(hmin). This shows a logarithmic increase in vhmin , and the slope of the dashed line in this panel is in
complete agreement with the results of Lister & Stone (1998), which they put on a sound theoretical
footing based on the asymptotic behaviour of the thread profile away from the pinch point towards a
pair of cones.
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(a) (b)

(c) (d)

Fig. 1. Evolution of a drop with viscosity ratio λ= 1 approaching pinch-off. (a) Interface profiles at a sequence of times as time
to pinch-off τ → 0. (b) Axial velocity v on the interface versus axial coordinate z at the same sequence of times. (c) The log–log
plot of minimum radius hmin versus τ . (d) Axial velocity vhmin at the minimum radius z = hmin versus ln(hmin), with the slope of
dashed line showing that vhmin ∼ −0.0243 ln(hmin)+ constant.

Following these earlier studies, we introduce the similarity variables

ξ = z − zmin

hmin
, H(ξ)= h

hmin
. (4.2)

By expressing profile data at times close to pinch-off in terms of H(ξ) and ξ , our computations support
the conclusion that in a neighbourhood of the pinch point the profile takes a self-similar form when λ is
in the approximate range 0.02<λ< 20, as seen in the top three panels of Figure 2.

For very small and very large values of λ, the approach to self-similar structure, if it occurs, is
less clear. The lower panels of Fig. 2 show results of simulations when λ= 0.001 (left panel) and
λ= 30 (right panel) over a larger interval in ξ . In both cases, oscillations of the rescaled profile appear
away from ξ = 0. This is consistent with the emergence of fine-scale structure of the thread profile
that develops as pinch-off is approached, which appears to be more prevalent at more extreme values
of λ. Two examples of fine-scale structure are shown in Fig. 3 when λ= 0.02 (top panels) and λ= 30
(lower panels). These show typical thread structures that occur at these values of λ although they have
developed from different initial thread profiles from the data of Figs 1 and 2. The right-hand panels
show that on increasingly small length scales as pinch-off is approached, a sequence of necks, threads
and bulges form, and the location zmin of the minimum thread radius can change discontinuously when
the decrease in radius at a minimum is overtaken by the decrease at a location nearby. This behaviour
has been noted in many numerical simulations of capillary pinch-off and in the experiments reported,
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Fig. 2. Rescaled profiles showing H(ξ)= h/hmin versus ξ = (z − zmin)/hmin for different λ. λ= 0.03, 0.1 and 10 show a collapse
of the data to self-similar form as pinch-off approaches, while sufficiently small or large λ do not show such collapse convincingly,
if it occurs. The legend indicates values of minimum neck radius hmin for which the data are extracted from the time-dependent
computations.

Fig. 3. Interface profiles near pinch-off with λ= 0.02 (upper panels) and λ= 30 (lower panels). The left-hand panels show the
global interface shape and the right-hand panels show fine-scale structure in a close-up near the pinch point.

for example, by Cohen et al. (1999) and Kowalewski (1996). Brenner et al. (1996) develop stability
results for families of similarity solutions that occur in long-wave models of pinch-off which may offer
a theoretical basis for this.

Figure 4 shows self-similar profiles extracted from the data at the final time just before pinch-off for
λ in the range 0.03 � λ� 1 in Fig. 4(a) and in the range 1 � λ� 20 in Fig. 4(b). The profiles closely
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14 of 17 M. R. BOOTY ET AL.

Fig. 4. Self-similar profiles extracted from the data near pinch-off, with λ= 0.03, 0.05, 0.1 and 1 in (a) and λ= 1, 5, 10
and 20 in (b).

Fig. 5. The cone slope S+ (left panel) and S− (centre panel) together with the parameter H0 (right panel, where hmin = H0τ )
versus λ. The dashed lines indicate a fit to the power laws S+ ∼ λ0.27, S− ∼ λ−0.5 and H0 ∼ λ−0.6.

resemble the results of Zhang & Lister (1999) and Sierou & Lister (2003). In the first of these two
studies, the results of time-dependent boundary integral computations of a pinching profile are given in
the range 1

16 � λ� 16 while in the second study the boundary integral formulation is expressed directly
in terms of similarity variables and the range is extended to 0.002 � λ� 500. The data of Fig. 4 show
the approach to constant profile slope as ξ → ±∞ as noted in these two studies and in Lister & Stone
(1998). This marks the connection to a pair of axisymmetric cones on either side of the pinch point,
with a steeper cone of slope S+ and a shallower cone of slope S−.

The data show a monotone increase of S+ and non-monotone behaviour of S− as λ increases, and a
maximum of S− occurs when λ� 0.5. The dependence of the cone slope on λ is explored further in the
data of Fig. 5. There, the left panel shows S+ versus λ in a log–log plot, which includes a dashed line of
slope 0.27. This is the scaling relation for S+ given by Sierou & Lister (2003) for large λ and is in close
agreement with the experimental result of Cohen et al. (1999) that S+ ∼ λ0.22±0.07 over a broad range
of λ. The centre panel of Fig. 5 reiterates the non-monotone behaviour of S−, and its dashed line has
slope −0.5 to show the fit of the data to S− ∼ λ−0.5 for λ> 1 which has been noted by Zhang & Lister
(1999). The right panel of the figure shows H0 versus λ, where hmin = H0τ as τ → 0; here the dashed
line has slope −0.6 while the experimental data of Cohen et al. (1999) suggest the scaling relation
H0 ∼ λ−0.53±0.05.
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=0.05

v h
m

in

=0.1

=10

ln(h
min

)

v h
m

in

=20

ln(h
min

)

Fig. 6. Axial velocity vhmin at the minimum thread radius z = hmin versus ln(hmin) for values of the viscosity ratio λ from 0.05 to
20, indicating logarithmic increase in axial velocity near pinch-off. Solid lines show the simulation results. Dashed lines in the top
two panels for small λ (λ= 0.05 and λ= 0.1) are obtained by neglecting the contribution from the double layer potential of (4.1)
and (4.3), while the dashed lines in the lower two panels for larger λ (λ= 10 and λ= 20) include the double layer contribution.

Lister & Stone (1998) give an estimate for the linear increase of the axial velocity at the minimum
radius vhmin with ln(hmin)when λ= 1 by analysis of the flow induced by surface tension in the asymptotic
cones that neighbour the vicinity of the minimum radius or pinch point. This is given by estimating
the right-hand side of (4.1) due to the single layer potential over the cone surfaces. The result can be
generalized to include λ |= 1 by estimating the integral on the left-hand side of (4.1) due to the double
layer potential, and if we make the approximation that v � u with v � constant on the cone surfaces,
which is expected to hold for large λ, we find that the contribution to v due to a single cone with semi-
angle α is (

1 + λ

2
+ (λ− 1)

3

8
sin2 2α

)
vhmin ∼ 1

8
sin 2α ln(hmin). (4.3)

The net contribution to v due to both cones is given by linear superposition, with cone angles αl and
αr. In Fig. 6, the solid lines show vhmin versus ln(hmin) from our computational data, with nearly linear
behaviour in the final stage as hmin → 0 when pinch-off is approached. The dashed lines in the top two
panels of the figure give the estimate for vhmin of (4.3) for small λ when the contribution from the double
layer potential, which is proportional to λ− 1, is neglected. In the lower two panels, the dashed line
gives the estimate of vhmin of (4.3) for large λ with the contribution due to the double layer potential
included.

5. Conclusion

Capillary pinching of a viscous thread or drop immersed in another viscous fluid has been considered
analytically and computationally at zero Reynolds numbers. The viscosity ratio between inner and outer
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fluids is arbitrary. The first part of the study considers the emergence of long-wave models as the viscos-
ity ratio λ varies. Three canonical models are found at increasingly larger values of λ, and the analysis
is found in Section 2. The lowest and largest viscosity ratio models, λ∼ ε2 and λ∼ 1/(ε2 ln(1/ε)),
respectively, are well-posed and provide appropriate limiting forms for the inner or outer region being
air, respectively. The intermediate case λ∼ 1/ ln(1/ε) is ill-posed, however, and indicates that a long-
wave model may not be appropriate in this case. This is consistent with our direct numerical simulations
for arbitrary λ based on boundary integral methods that show that, at intermediate λ, a self-similar solu-
tion emerges but with unit aspect ratio. Additional investigation of the derived long-wave models and
comparison with additional direct simulations is beyond the scope of the present work and is currently
being studied by the authors.
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Appendix

For the scaling λ∼ ε2 at item 1 of Section 2.3.1, set

λ= λ0ε
2, f = εf0 + · · · , g = εg0 + · · · , δ = 1, (A.1a)

uz = (1/ε)uz0 + · · · , ur = ur0 + · · · , p = p0 + · · · , R̃ = R0 + · · · . (A.1b)

This scaling retains all terms among (2.21), and hence all leading terms among the components of the
stress-balance boundary conditions (2.18) and (2.19), which become

∂p0

∂z

R0

4
= −2f0

R0
− 2g0R′

0

R2
0

+ 2g′
0

R0
, tangential stress balance, (A.2)

p0 − 4g0

R2
0

= 1

R0
, normal stress balance. (A.3)

In this scaling regime, the continuity of velocity and the kinematic condition as expressed by (2.26–
2.28) are modified by setting the Stokeslet distribution f0 to zero. When this is done, after eliminating
B0 between the relations analogous to (2.26) and (2.27), one finds an expression for g0. Using this to
eliminate g0 in the relation analogous to (2.28), the result (on dropping subscripts) is (2.23). When the
expression for g0 is substituted in (A.3), one finds (on dropping subscripts) (2.24).

The Stokeslet strength f0 uncouples from the leading-order dynamics in this scaling regime, as noted
in Hameed et al. (2008a). It can be found from (A.2).
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